

University of Stuttgart

Faculty of Computer Science

Program of Study: Information Technology

Examiner: Prof. Dr. K. Rothermel

Supervisor: Dipl. Inform. Detlef Bosau

Begin: December 1, 2001

End: May 31, 2002

CR-Classification: C.2.1, C.2.2, C.2.4

Master Thesis Nr. 1978

Development of
Network Service Infrastructure

For Transcoding Multimedia Streams

Antony Pranata

Institute of Parallel and

Distributed High-Performance Systems

Distributed Systems Department

University of Stuttgart

 ii

���������

In the COMCAR project, distributed multimedia applications can be run on
mobile terminals at different locations, e.g. a mobile terminal may have access to
the Internet using 3rd generation mobile networks, or the mobile terminal may
have access to a campus LAN using WaveLAN or HiperLAN.

Adaptive applications, in order to be run, can be adapted depending on the
mobile terminal’s location, its facilities and the network connection in use. One
possibility of adaptation is the use of transcoding services for media stream when
there is no common media format supported both, at the source and the sink of the
stream, or none of the supported format matches the limitations of the available
network connection. For example, a media stream is transcoded from a highly
resource consuming format, Cinepak, to format which requires less resources,
H.263.

Based upon Java, Jini and JMF, in this thesis a service infrastructure for
transcoding services is to be designed and prototypically implemented. The
service infrastructure is to provide 1) mechanisms to find and select transcoding
services, which are appropriate for a given transcoding problem (service
brokering) 2) mechanisms to construct the service chain from the source through
one or more transcoding services to the sink according the definitions provided by
the application.

 iii

��	
��������
��

I would like to thank to Prof. Rothermel for giving me a change to do this thesis in
Distributed Systems department and Ernoe Kovacs who has introduced this topic.

I would also like to thank to Detlef Bosau and Klaus Roehrle for assisting me
during the writing of this thesis. Their feedback has helped me very much to
improve the quality of this thesis.

Finally I would like to thank to my mother and all my friends here, especially
Novi who has supported me, Larry, Irwan, Ferry, Inti, and all Indonesian students
in Stuttgart.

 iv

����������
��
���

Abstract .. ii

Acknowledgement...iii

Table of Contents.. iv

List of Figures ...viii

List of Tables.. x

Chapter 1 Introduction ... 1

1.1 Motivation ... 1

1.2 The COMCAR Project .. 2

1.3 Organization of the Thesis... 3

Chapter 2 Distributed Multimedia Systems.. 5

2.1 Terminology .. 5

2.2 Applications of Distributed Multimedia Systems 6

2.2.1 Conversational Applications.. 6

2.2.2 Messaging Applications .. 6

2.2.3 Retrieval applications .. 7

2.2.4 Distribution Applications .. 7

2.2.5 Applications in This Thesis ... 7

2.3 Multimedia Compression .. 7

2.4 Networks.. 8

2.4.1 LAN... 9

2.4.2 Wireless Network .. 9

2.4.3 Comparison.. 9

2.5 Network Protocols ... 10

2.5.1 Internet Protocol (IP) ... 11

2.5.2 Transmission Control Protocol (TCP)................................... 11

 v

2.5.3 User Datagram Protocol (UDP)... 11

2.5.4 Real-time Transport Protocol (RTP) 11

2.5.5 Real-time Transport Streaming Protocol (RTSP).................. 11

2.5.6 HyperText Transport Protocol (HTTP) 12

2.6 Quality of Service (QoS) ... 12

2.7 Summary.. 12

Chapter 3 Java-based Middleware .. 13

3.1 Introduction to Middleware... 13

3.1.1 Distribution Transparency ... 14

3.1.2 Middleware Models... 14

3.1.3 Middleware Services ... 15

3.2 Java RMI.. 15

3.2.1 RPC Failure Semantics.. 16

3.3 Jini ... 16

3.3.1 Architecture of Jini .. 17

3.4 Summary.. 18

Chapter 4 Transcoding Infrastructure.. 19

4.1 Example Scenario.. 19

4.2 Solution.. 20

4.2.1 Solving Heterogeneity and Mobility Problems 21

4.2.2 Transcoders to Solve Heterogeneity and Mobility Problems 22

4.2.3 Lookup Service and Service Broker...................................... 24

4.3 Requirements... 25

4.3.1 Server... 25

4.3.2 Transcoder ... 25

4.3.3 Client ... 25

4.3.4 Service Broker ... 26

4.3.5 Lookup Service.. 26

4.4 Summary.. 26

Chapter 5 Architecture Design... 27

5.1 Service Brokering .. 27

5.1.1 Finding Source Format and Destination Format 27

5.1.2 Finding Transcoding Format ... 28

5.1.3 Assigning Priority to Transcoding Format 29

 vi

5.1.4 Cascade Filtering ... 31

5.1.5 QoS Parameters ... 33

5.1.6 Flow Chart ... 33

5.2 Service Chaining.. 35

5.2.1 Finding Lookup Service .. 35

5.2.2 Service Registration... 36

5.2.3 Requesting Transcoder Service ... 39

5.2.4 Server-initiated Request .. 41

5.2.5 Streams Garbage.. 44

5.2.6 Transcoder Handover .. 45

5.3 Transcoder Configuration.. 46

5.4 N-Level Transcoding... 47

5.4.1 Constructing Directed Graph... 48

5.4.2 Optimizing Directed Graph ... 49

5.4.3 Adding Client and Server .. 50

5.4.4 Constructing Weighted Graph... 52

5.4.5 Shortest Path Algorithm .. 53

5.4.6 Flow Chart ... 54

5.4.7 Implementation Problems.. 56

5.5 Summary.. 56

Chapter 6 Implementation.. 57

6.1 Platform ... 57

6.1.1 Programming Language .. 57

6.1.2 Communication Protocol... 58

6.1.3 Service Discovery Protocol ... 58

6.1.4 Architecture ... 59

6.2 Transcoder ... 59

6.2.1 TranscoderInterface and TranscoderImpl.............................. 60

6.2.2 TranscoderPlayerInterface and TranscoderPlayerImpl 62

6.2.3 TranscoderDaemon.. 64

6.3 Service Broker ... 66

6.3.1 ServiceBrokerDaemon... 66

6.3.2 ServiceBrokerInterface and ServiceBrokerImpl 67

6.3.3 ClientPreferences... 67

6.3.4 SystemInfo... 67

6.4 Client ... 68

 vii

6.5 Establishing Connection.. 69

6.6 Summary.. 70

Chapter 7 Integration and Testing... 71

7.1 Integration.. 71

7.1.1 Hardware ... 71

7.1.2 Software... 71

7.1.3 Service ... 71

7.1.4 Installation ... 72

7.2 Testing ... 75

7.3 Summary.. 76

Chapter 8 Related Works ... 77

8.1 Proxy-based Transcoding .. 77

8.1.1 Architecture ... 77

8.1.2 Contribution of This Thesis... 78

8.2 KISS Project .. 79

8.2.1 Contribution of This Thesis... 80

8.3 ICEBERG Project.. 80

8.3.1 Contribution of This Thesis... 81

8.4 Summary.. 82

Chapter 9 Summary and Future Works ... 83

9.1 Summary.. 83

9.2 Future Works ... 83

Appendix A Java Media Framework... 85

Appendix B Class Hierarchy .. 89

Client ... 89

Service Broker ... 89

Transcoder ... 90

References... 91

 viii

����������������

Figure 1-1 The COMCAR system (courtesy of the COMCAR project)................... 3

Figure 2-1 Architecture of distributed multimedia systems (courtesy of Coulouris
et. al., 2001)... 6

Figure 2-2 TCP/IP and OSI reference model.. 10

Figure 3-1 Architecture of a distributed system as middleware (courtesy of
Rothermel, 2001)... 14

Figure 3-2 Principle of RPC between a client and server program (courtesy of
Tanenbaum and van Steen, 2002).. 16

Figure 3-3 The Jini architecture (courtesy of Sun Microsystems, 2001).............. 16

Figure 3-4 A flow diagram of Jini technology (courtesy of Sun Microsystems,
2001).. 17

Figure 4-1 Heterogeneity of client devices and network connections................... 20

Figure 4-2 The architecture of a simple transcoding infrastructure..................... 22

Figure 4-3 Transcoders for mobile clients.. 23

Figure 4-4 Another advantage of the transcoding infrastructure.......................... 24

Figure 4-5 Architecture of the network service infrastructure for transcoding
multimedia streams.. 25

Figure 5-1 How to find the transcoder?.. 28

Figure 5-2 An example of a list of transcoding formats and destination formats.29

Figure 5-3 Cascade filtering to the list of transcoders.. 32

Figure 5-4 Flowchart of service brokering.. 35

Figure 5-5 Registration of service broker using multicast request....................... 37

Figure 5-6 Registration of service broker using multicast announcement and
unicast discovery... 37

Figure 5-7 A time diagram of a service ID.. 38

Figure 5-8 Stream and control flow of the client-initiated request....................... 39

Figure 5-9 Time diagram of client-initiated request for multimedia streams....... 41

Figure 5-10 Architecture of the server-initiated service chaining........................ 42

Figure 5-11 Time diagram of server-initiated request for multimedia streams.... 44

Figure 5-12 Time diagram of elimination of streams garbage.............................. 45

Figure 5-13 Example of flat transcoding infrastructure.. 46

 ix

Figure 5-14 Example of hierarchical transcoding infrastructure......................... 47

Figure 5-15 Service brokering and service chaining in N-level transcoding........ 48

Figure 5-16 Example of four transcoders in a network... 49

Figure 5-17 Directed graph for the transcoders... 49

Figure 5-18 Directed graph after optimization... 50

Figure 5-19 Directed graph for the transcoders, the server and the client........... 51

Figure 5-20 Another directed graph for the transcoders, the server and the client.
... 51

Figure 5-21 Two possible chains from the server to the client.............................. 52

Figure 5-22 Weighted and directed graph for the transcoders............................. 53

Figure 5-23 Finding the shortest path using Dijkstra algorithm........................... 54

Figure 5-24 Flow chart of service brokering and service chaining of N-level
transcoding.. 55

Figure 6-1 Architecture of transcoder, client and service broker from Java
perspective... 59

Figure 6-2 Architecture of the transcoder... 60

Figure 6-3 Stream flow in the transcoder player... 63

Figure 6-4 Attributes of a transcoder.. 65

Figure 6-5 Not all source formats can be transcoded to the destination formats.66

Figure 6-6 Architecture of the service broker... 67

Figure 6-7 Stream flow in the client.. 69

Figure 6-8 Protocols to establish a connection from Java perspective................. 70

Figure 7-1 Installing the components of the transcoding service into computers.72

Figure 7-2 The configuration of testing purpose... 75

Figure 8-1 Basic architecture of proxy-based transcoding (courtesy of A. Fox,
et.al., 1996).. 77

Figure 8-2 Architecture of network infrastructure of KISS project (courtesy of K.
Jonas, et. al., 1998).. 79

Figure 8-3 One scenario of APC in the ICEBERG project (courtesy of Mao and
Ratz, 2000)... 81

 x

��������������

Table 2-1 Bandwidth requirements of uncompressed multimedia streams............. 7

Table 2-2 Comparison of several audio compression algorithms........................... 8

Table 2-3 Comparison of several video compression algorithms........................... 8

Table 2-4 Comparison of network bandwidth... 10

Table 4-1 Different capabilities of some typical computer devices....................... 20

Table 5-1 Priority table of audio formats in the service broker............................ 30

Table 5-2 Priority table of video formats in the service broker............................ 30

Table 5-3 Priority table of audio and video formats in the service broker........... 31

Table 5-4 Finding the shortest path using Dijkstra algorithm.............................. 54

Table 7-1 List of transcoders in the integration part.. 74

��������� �

�
���������
�

1.1 Motivation
The explosive growth of the Internet and mobile computing introduces two

main problems in distributed multimedia applications. The first problem is
heterogeneity of client devices and their network connections. The client devices
may vary from desktop PCs, notebook computers, PDAs to mobile phones, which
their capabilities also vary along many axes, including screen size, color depth and
processing power [8]. Furthermore, they may connect to the Internet via different
networks, such as wired LAN, wireless LAN or wireless WAN.

The second problem is mobility of clients. The clients may be moving
while they are accessing multimedia streams. It may cause a problem because the
network connections may change from time to time, ranging from a very good
network to a congested network.

The two problems described above make it difficult for a multimedia
server to provide a streaming service which is appropriate for every client in every
situation. A solution to the problems above, which is presented in this thesis, is by
converting multimedia streams to the appropriate format on-the-fly. The
converting process is also known as transcoding, which means converting
multimedia streams from one format to another format. The transcoding process
itself needs a new server, called transcoder.

The purpose of this thesis is to develop a prototype of a network service
infrastructure for transcoding multimedia streams. The prototype allows a client
on a network to request a multimedia stream and the transcoder transcode it to the
appropriate format for the client. The service infrastructure should be able to find
the appropriate transcoder and build chain from the server to the client.

The prototype proposed in this thesis is designed for a Campus LAN only.
It may need some modifications to be applied for larger areas, such as the Internet.
Scalability is an important issue to be considered when applying the infrastructure
to the Internet because the number of users may be in order of millions.

There are a lot of areas which can use this transcoding service
infrastructure. I will give four examples of scenarios here. The first scenario is

Chapter 1: Introduction

2

for exhibitions, such as CeBit or COMDEX. They may use the infrastructure to
broadcast a video news or any multimedia information about the exhibition. The
visitors, which use various types of devices, are able to watch the video because
transcoders transcode the original stream to the appropriate format for them.

The second scenario is for sport events, such as Olympic Games or
Football World Cup, which takes place in a city. The committee of the sport
event may want to broadcast the latest news for reporters or visitors. They may
install transcoders in the stadiums or buildings where the video can be watched
using client devices, such as notebooks or PDAs.

The third scenario is for museums which offers multimedia streams to
explain the content or history of their museums. Currently, many museums
provide a tape-player or a head-set so that the visitors are able to listen or watch
the history of some other stuffs there. Using the transcoder infrastructure, the
visitors are now be able to use their mobile devices to watch or listen.
Furthermore, they may be walking around while listening to the explanation.

The last scenario is the most ambitious one and it is one goal of the
COMCAR project. The end users on the cars or trains should be able to access
multimedia streams while they are moving. For example, the transcoder should be
able to transcode the Digital Video Broadcast (DVB) or Digital Audio Broadcast
(DAB) depends on the network conditions.

1.2 The COMCAR Project
This thesis is part of the COMCAR project. The COMCAR project itself

is a part of UMTSplus, a new system concept sponsored by the Germany Ministry
for Education and Research (BMB+F), which aims at Universality and Mobility in
Telecommunication Networks and Systems. Partners in COMCAR are
DaimlerChrysler AG, Research & Technology Eurolab Deutschland GmbH, Sony
International (Europe) GmbH, and T-Nova Innonvationgesellschaft mbH [5].

The COMCAR project targets at the conception and prototypical
realization of an innovative mobile communication network, which shall satisfy
the increasing demand for IP-based multimedia and telematics services especially
in cars and railways. The main focus in COMCAR is on asymmetrical and
interactive IP-based services (see Figure 1-1). Existing and upcoming elaborated
radio technologies and infrastructures such as GSM, UMTS, DVB-T, and DAB
shall be used and optimized to bring asymmetric high-quality IP-based services to
vehicles like cars and trains.

COMCAR will provide flexible communication environment in which
QoS parameter will change on a wide scale. COMCAR will examine how this
scenario might influence emerging Internet technologies for integrating QoS in IP
networks. Furthermore, COMCAR will also develop mobile middleware
technologies that allow adaptive multimedia applications to react user-tailored to
the changing user situation.

Chapter 1: Introduction

3

Figure 1-1 The COMCAR system (courtesy of the COMCAR project).

The result of this thesis might be used in the COMCAR project especially
in the adaptation application [20]. Currently the adaptation is based on different
streams available on the source. The introduction of transcoding infrastructure
will make the adaptation algorithm more flexible because there are more different
choices of streams which can be selected.

1.3 Organization of the Thesis
In general, this thesis consists of two main parts, concept part and design

part. The concept part, which contains Chapter 1 to 3, discusses the introduction
to distributed multimedia systems. The design part, which contains Chapter 4 to
9, discusses the requirements, design, implementation and evaluation of the
transcoding infrastructure.

Chapter 1 (this chapter), Introduction, discusses the background of this
thesis and gives some application scenarios in which the result of this thesis may
be applied.

Chapter 2, Distributed Multimedia Systems, discusses some important
aspects in distributed multimedia systems which have relations with this thesis,
including the terminology and applications of distributed multimedia systems,
multimedia compression, networking and network protocols for distributed
multimedia systems and finally Quality of Service.

Chapter 3, Java-based Middleware, discusses middleware of distributed
systems, but it focuses on Java-based middleware. There are two main
discussions in this chapter, RMI and Jini.

Chapter 4, Transcoding Infrastructure, discusses the background why we
need transcoding infrastructure in distributed multimedia systems. It also covers
the requirements of a common transcoding infrastructure.

Chapter 1: Introduction

4

Chapter 5, Architecture Design, discusses the architecture design of the
transcoding infrastructure implemented in this thesis. There two main
discussions, service brokering and service chaining.

Chapter 6, Implementation, discusses the implementation of the
transcoding infrastructure in Java platform. It explains how each component of
the transcoding infrastructure can be implemented in Java technology and classes.

Chapter 7, Integration and Evaluation, discusses how the components of
the infrastructure can be integrated in real-world. This chapter also gives an
evaluation of the tests performed in this real infrastructure.

Chapter 8, Related Works, discusses some related works which also deal
with transcoding infrastructure. This chapter also discusses the contribution of
this thesis to the community.

Chapter 9, Summary and Future Works, gives summary of this thesis and
some outlooks in the future.

��������� �

���������������������� !������

This chapter gives an overview of some aspects in distributed multimedia
systems which have relations with this thesis. It starts with some important
terminologies and application scenarios in distributed multimedia systems. After
that, it explains multimedia compression which is very important in distributed
multimedia systems and used very intensive in this thesis. The next part is
networks and networking protocols which can be used by distributed multimedia
systems. At the end of this chapter, there is a discussion about Quality of Service
(QoS).

2.1 Terminology
Before discussing distributed multimedia systems, I first discuss multimedia

systems and multimedia communications. Lu [9] defines multimedia systems as
any systems capable of handling discrete media as well as at least one type of
continuous media in digital form.

Discrete media (also called time-independent media or static media) are
media that do not have a time dimension, their meanings do not depend on the
presentation time. Discrete media include alphanumeric data and graphics. On
the other hand, continuous media (also called time-dependent media or dynamic
media) have a time dimension, their meanings depend on the rate at which they
are presented. Continuous media include animation, audio and video.

According to Wolf et. al. [35], multimedia communications deals with the
transfer, the protocols, the services and the mechanisms of/for multimedia in/over
digital networks.

Multimedia systems can be classified into standalone multimedia systems
and distributed multimedia systems [9]. Standalone multimedia systems use
dedicated system resources and multimedia communications is not supported,
while according to Steinmetz and Nahrstedt [26], in distributed multimedia
systems, data of digital and continuous media are transmitted and information
exchange takes place.

Moreover, in digital networks, transmitted information or media are divided
into packets and subsequently sent away from the source to the destination. A
sequence of individual packets transmitted in a time-dependent fashion is called
data streams or media streams. Multimedia communications usually use

Chapter 2: Distributed Multimedia Systems

6

isochronous transmission mode, which means there are minimum and maximum
end-to-end delay for each packet of media streams.

2.2 Applications of Distributed Multimedia Systems
Coulouris et. al. [6] proposed the architecture of distributed multimedia

systems as shown in Figure 2-1. It shows some multimedia systems on LANs
which are connected through a WAN. The multimedia systems here are capable
of accessing digital video server and digital TV/radio broadcast.

Wide area gateway Video
server

Digital
TV/radio
server

Video camera
and mike

Local network Local network

Figure 2-1 Architecture of distributed multimedia systems (courtesy of Coulouris
et. al., 2001).

The typical distributed multimedia systems are capable of supporting
variety of applications. In general, there are four types of applications [9], i.e.:

• Conversational applications.

• Messaging applications.

• Retrieval applications.

• Distribution applications.

2.2.1 Conversational Applications
Conversational applications (or live applications) deal with bi-directional

communications with real-time, end-to-end media transfer. They imply a human
user and another human user or a system.

The examples of conversational applications are video conference and
video telephony.

2.2.2 Messaging Applications
Messaging applications cover the non-real-time or asynchronous exchange

of multimedia data via electronic mailboxes.

Chapter 2: Distributed Multimedia Systems

7

2.2.3 Retrieval applications
Retrieval applications allows the users to retrieve media data stored in a

server. The media data are available to the users anytime and they are exclusively
transmitted from the server to the requesting client. Moreover, the users is able to
control the media streams, for example play, pause, stop, rewind or fast forward.

The examples of retrieval applications are VOD (Video On-Demand) and
AOD (Audio On-Demand).

2.2.4 Distribution Applications
Distribution applications are used to distribute media to a large number of

users. There exists a point-to-multipoint connection between the media server and
the users. The users are unable to control the media streams except in
configurations where one master have the permission to control the streams.

The examples of distribution applications are audio broadcast, such as
Internet radio, and TV broadcast.

2.2.5 Applications in This Thesis
This thesis only deals with conversational, retrieval and distribution

applications. The messaging applications is not covered in this thesis because it is
done asynchronously. However, the implementation part of this thesis considers
only retrieval and distribution applications.

2.3 Multimedia Compression
Uncompressed multimedia data require a lot of storage capacity and very

high bandwidth [26]. For example, uncompressed audio streams of CD quality is
sampled at a rate of 44.1 kHz and is quantized with 16 bits per sample in 2
channels, hence the bandwidth requirements is 44100 x 16 x 2 = 1.41 Mbps.

Table 2-1 shows bandwidth requirements for some multimedia streams. It
is shown in this table that uncompressed standard TV video cannot even be
transmitted via 100 Mbps Ethernet LAN.

Table 2-1 Bandwidth requirements of uncompressed multimedia streams.

 Sample rates or
Dimensions

Bandwidth
Requirements

Telephone speech 8 kHz, 8 bit, 1 channel 64 kbps

CD-quality sound 44.1 kHz, 16 bit, 2 channels 1.41 Mbps

Standard TV video 640 x 480 pixels x 16 bit, 25 fps 123 Mbps

The use of multimedia compression is therefore very essential. Since the
source should encode the streams and the destination should decode them,
multimedia compression imposes substantial loads on processing resources, such
as CPU power [6]. Some compression methods even need special-purpose
hardware called codecs (coders/decoders).

Chapter 2: Distributed Multimedia Systems

8

Table 2-2 and Table 2-3 compares some compression algorithms
commonly used today. Steinmetz and Nahrstedt [26] and Lu [9] discuss the
compression algorithms in more detail.

Table 2-2 Comparison of several audio compression algorithms.

Audio
Compression

Sampling
Rate

Bits per
Sample

Bit
Rate

Computational

G.711 (µ-Law) 8 kHz 8 bits 64 kbps Low

G.721 8 kHz 8 bits 32 kbps Low

G.723 8 kHz 8 bits 24 and
40 kbps

Low

DVI 8 kHz 4 bits 32 kbps Low

GSM 06.10 - - 13.2 kbps Low

MPEG-1 Layer 1 32, 44 and
48 kHz

16 bits 32 – 448 kbps High

MPEG-1 Layer 2 32, 44 and
48 kHz

16 bits 32 – 384 kbps High

MPEG-1 Layer 3 32, 44 and
48 kHz

16 bits 32 – 320 kbps High

Table 2-3 Comparison of several video compression algorithms.

Video
Compression

Resolution Format Bit rate Computational

H.261 CIF, QCIF px64 kbps Low

H.263 CIF, QCIF, SQCIF,
4CIF, 16CIF

28.8 – 768 kbps Low

MPEG-1 352 x 240 pixels, 30 fps 1.5 Mbps High

MPEG-1 352 x 288 pixels, 25 fps 1.5 Mbps High

MPEG-2 720 x 480 pixels, 30 fps 15 Mbps Very High

MPEG-2 1920 x 1080 pixels, 30 fps 80 Mbps Very High

MPEG-4 - 28.8 – 500 kbps High

2.4 Networks
As explained in the first section, distributed multimedia systems need

digital networks to transmit the streams. Currently there are many types of digital
networks, but Tanenbaum [31] and Coulouris et.al. [6] categorize them into five
main types, i.e. LAN (Local Area Network), MAN (Metropolitan Area Network),
WAN (Wide Area Network), wireless network and internetworking. Since this
thesis focuses on a Campus LAN, only LAN and wireless network are discussed
here.

Chapter 2: Distributed Multimedia Systems

9

2.4.1 LAN
LAN uses twisted copper wire, coaxial cable or optical fiber to connect

computers in a department or a building. The examples of LAN are Ethernet
(IEEE 802.3 standard), which offers 10 Mbps to 1000 Mbps bandwidth, and
Token Ring (IEEE 802.5 standard).

2.4.2 Wireless Network
Wireless network is used for portable and mobile devices which require

wireless communication. In general, wireless network can also be divided into
three sub-categories, i.e.:

• WPAN (Wireless Personal Area Network)

• WLAN (Wireless Local Area Network)

• WWAN (Wireless Wide Area Network)
WPAN supports only communication within a few meters. There are two

important standards of WPAN, i.e. IrDA and Bluetooth. WPAN is not considered
in this thesis due to the limitation of its communication range.

WLAN, like wired LAN, covers a building or a department in a company.
Nowadays there are two types of WLAN that are widely used, i.e. WaveLAN
(IEEE 802.11 standard), which is also called Wi-Fi, and HiperLAN.

WWAN covers mobile phones networks which are currently used, called
second generation of mobile networks. The examples of them are GSM (Global
System for Mobile communication) used in Europe and CDPD (Cellular Digital
Packet Data) used in the US. Currently, the 2.5nd generation mobile network,
called GPRS (General Packet Radio Services), is entering the market with higher
bandwidth than GSM or CDPD. The future of mobile networks if 3rd generation,
called UMTS (Universal Mobile Telecommunication Services).

2.4.3 Comparison
Table 2-4 summarizes some different networks of LAN and wireless

network which is mostly used in the discussion of this thesis.

Chapter 2: Distributed Multimedia Systems

10

Table 2-4 Comparison of network bandwidth.

 Network Bandwidth
LAN Ethernet (802.3) 10 Mbps and 100 Mbps

 Gigabit Ethernet 1 Gbps

 Token-Ring (802.5) 4 Mbps and 16 Mbps

Wireless LAN WaveLAN (802.11b) 11 Mbps
 WaveLAN (802.11g) 54 Mbps

 HiperLAN/1 20 Mbps

 HiperLAN/2 54 Mbps

Wireless WAN GSM 9.6 to 14.4 kbps

 CDPD 19.2 kbps

 HSCSD 56 kbps

 GPRS 56 to 144 kbps

 UMTS 144 kbps, 384 kbps, 2 Mbps

2.5 Network Protocols
As explained in the first section, distributed multimedia systems need a

digital network to transmit the streams. This thesis is mostly based on IP
network. Tanenbaum illustrates the reference model of TCP/IP network as
opposed to OSI reference model as in Figure 2-2.

Application

Presentation

Session

Transport

Network

Data link

Physical

7

6

5

4

3

2

1

Application
HTTP, FTP, RTP, RTSP

Transport
TCP UDP

Internet
IP

Host-to-network
Wireless LAN
Wireless WAN

OSI TCP/IP

Figure 2-2 TCP/IP and OSI reference model.

In the lowest layer of TCP/IP model, there are several possible networks
which is discussed in the last section. On each upper layer, there is one or more
different protocols which can be used.

Chapter 2: Distributed Multimedia Systems

11

2.5.1 Internet Protocol (IP)
IP (RFC 791) [12] is designed for use in interconnected systems of packet-

switched computer communication networks. IP provides for transmitting blocks
of data called datagrams or packets from sources to destinations, where sources
and destinations are hosts identified by fixed length addresses. IP version 4 (IPv4)
uses 32 bit length addresses divided into four parts, for example 129.69.209.104.
IP version 6 (IPv6), which is designed to overcome the limitation of IPv4, uses
128 bit length addresses.

2.5.2 Transmission Control Protocol (TCP)
TCP (RFC 793) [14] is intended for use as a reliable host-to-host protocol

between hosts in packet-switched computer communication networks, and in
interconnected systems of such networks.

Since TCP provides reliable connections, it is used in this thesis for
controlling the streams, for example to request a stream or play a stream.

2.5.3 User Datagram Protocol (UDP)
UDP (RFC 768) [11] is defined to make available a datagram mode of

packet-switched computer communication. UDP is a procedure for application
programs to send messages to other programs with a minimum of protocol
mechanism. As opposed to TCP, the delivery and duplicate protection are not
guaranteed in UDP, in other words it provides unreliable delivery of streams.

Since UDP provides unreliable connections, it is used in this thesis for
delivering multimedia streams. In most cases, small packets loss in multimedia
streams are acceptable from the user point-of-view. As an addition, TCP is not
suitable for delivering multimedia streams because this protocol does not give
time integrity. Since TCP is a reliable protocol, it will retransmit any loss packets.
In multimedia applications, such conversational applications, re-transmitting
packets loss will not make any difference from the recipient side.

2.5.4 Real-time Transport Protocol (RTP)
RTP (RFC 1889) [14] provides end-to-end network transport functions

suitable for applications transmitting real-time data, such as audio or video over
multicast or unicast network services. RTP typically runs on top of UDP, but it
may be used with other suitable underlying network protocols. RTP adds type
identification, sequence numbering, timestamping and delivery monitoring to the
IP packets to provide end-to-end delivery services for real-time data.

2.5.5 Real-time Transport Streaming Protocol (RTSP)
RTSP (RFC 2326) [16] is an application-level protocol for control over the

delivery of data with real-time properties. In other words, RTSP acts as a
"network remote control" for multimedia servers. The streams controlled by
RTSP usually use RTP, but the operation of RTSP does not depend on the
transport protocol. Some methods available in RTSP include SETUP, PLAY,
RECORD, PAUSE and TEARDOWN.

Chapter 2: Distributed Multimedia Systems

12

2.5.6 HyperText Transport Protocol (HTTP)
HTTP (RFC 2616) [15] is an application-level protocol for distributed,

collaborative, hypermedia information systems. HTTP is widely used in World
Wide Web for data transfer, and in fact many media providers store their media
files on HTTP servers.

2.6 Quality of Service (QoS)
Currently IP protocol only allows end-to-end delivery service with “best-

effort” delivery model. It means packets will be delivered to the destination as
soon as possible without any commitment to bandwidth or latency. This is not
adequate for distributed multimedia systems because the meaning of the packets
depends on the time. Some protocols have been introduced to allow end-to-end
delivery service on IP protocol, such as ST2 (The Internet Streaming Protocol
Version 2) [13] , Heidelberg Transport System [9] and Tenet [9].

According to Lu [9], distributed multimedia systems need end-to-end
guarantees in order to achieve desired application quality. Based on this, the
concept of Quality of Service (QoS) is introduced. QoS is normally specified by
a set of parameters, for example bit rate, error rate, delay and delay jitter. One or
more values might be associated with each QoS parameter. For example, an
application may specify bit rate in a range of 100 – 150 kbps and delay bound =
100 ms.

Steinmetz and Nahrstedt [26] divides QoS parameters into three different
categories, i.e.:

• Application QoS. Application QoS parameters describe requirements for
application services, such as media quality and media relations.

• System QoS. System QoS parameters describe requirements on the
communication services and operating systems, such as throughput, delay,
response time, rate, etc.

• Network QoS. Network QoS parameters describe requirements on the
network services, such as latency, bandwidth, delay jitter, etc.

The simplest QoS model is as follows, an application specifies its QoS
requirements, which are submitted to the system. The system determines whether
it is able to meet the requirements. If yes, it accepts the application and allocates
the necessary resources so that the requirements is satisfied. If it has insufficient
resources, the system may reject or negotiate the application by suggesting a
lower QoS requirements.

2.7 Summary
This chapter gives an overview of some areas in distributed multimedia

systems which is used in this thesis. The first discussion gives some important
terminologies, followed by some applications of distributed multimedia systems
as well as multimedia compression. The next discussion is about networks and
networking protocol. The last discussion gives a brief overview of Quality of
Service.

��������" �

#�$�%����������������

This chapter introduces the concept of middleware in distributed systems.
It will only focus on Java-based middleware because the implementation of this
thesis uses Java platform. There are two middleware models discussed here, Java
RMI (Remote Method Invocation), which is Java-version of the RPC (Remote
Procedure Call), and Jini, which is a service discovery protocol built on the top of
RMI.

3.1 Introduction to Middleware
The most common way to make communication between distributed

applications is by using operations on sockets. The basic principle is explicitly
exchanging messages using send and receive command of the socket mechanisms.
The message itself can be encoded in a binary or text form. For example, a client
may issue a REQUEST command to a server using TCP protocol. The server then
sends back RESPOND command to the client using the same protocol.

In general, sockets are flexible and sufficient for most communications,
but there is no distribution transparency, in this case location transparency.
Furthermore the design of the socket protocols is cumbersome and error-prone.

Many distributed systems introduce an additional layer, called middleware,
to overcome this problem. The purpose of middleware is to provide the
distribution transparency and hide the heterogeneity of the underlying platforms
[32]. The middleware layer sits in the middle between applications and the
network operating systems, as illustrated in Figure 3-1.

Chapter 3: Java-based Middleware

14

Application

Presentation

Session

Transport

Network

Data Link

Physical

A1 A2 An

Middleware

Transport

Network

Data Link

Physical

Operating
System

Figure 3-1 Architecture of a distributed system as middleware (courtesy of
Rothermel, 2001).

3.1.1 Distribution Transparency
According to Rothermel [24], every distributed systems provides

distribution transparency. There are several types of distribution transparency,
i.e.:

• Access transparency, local and remote resources are accessed in the same
way. This thesis supports access transparency because JMF, which is
discussed in Appendix A, provides the same way to access media stream
from local or remote location.

• Location transparency, location of objects is not known to the users. This
thesis supports location transparency by using naming service of Jini
which hides the actual location of a service.

• Replication transparency, the number of copies of an object is not known
to the users. This thesis does not support replication transparency, but it
might be added in the future. For example, the users may access a source
media by using a familiar name, such as “CNN Live”, and this name
points to more than one URL.

• Migration transparency, objects can migrate without affecting
applications. This thesis supports migration transparency because a
transcoder service might be moved to another computer. The users are
still able to find it using service discovery protocol of Jini.

• Fragmentation transparency, objects are accessed without knowledge
about any possible fragmentation. This thesis does not support
fragmentation transparency.

3.1.2 Middleware Models
Most middleware is based on some models for describing distribution and

communication. Tanenbaum outlines some of middleware models, i.e.

• RPC (Remote Procedure Calls). This model hides network
communication by allowing a process to call a procedure located on a

Chapter 3: Java-based Middleware

15

remote machine. It appears as if the procedure call is executed locally, the
calling process is unaware of the fact that communication network takes
place. The examples of RPC are Sun RPC and Java RMI.

• Distributed Objects Invocations. The idea of this model comes from RPC
that if procedure calls could cross machine boundaries, it should also be
possible to invoke objects located on remote machines. The essence of
distributed objects is that an object implements an interface that hides all
implementation details from the users. The examples of distributed object
invocations are CORBA (Common Object Request Broker Architecture)
and Microsoft’s DCOM (Distributed Component Object Model).

• Messaging. The communication is done by passing messages between
machines asynchronously. The example of messaging is SOAP (Simple
Object Access Protocol) which develops an RPC-like model based on
XML.

3.1.3 Middleware Services
Tanenbaum gives some examples of services common to middleware

systems, i.e.:

• Communication Facilities. The middleware provides communication
facilities that hides the low-level message passing through the networks.
This thesis uses Java RMI for communication facilities which is discussed
later.

• Naming. Name services allow entities to be shared and looked up as in
directories. The examples of name services are DNS (Domain Name
System) and X.500. This thesis uses Jini technology which is based on a
light version of X.500 name service, called LDAP (Light Directory Access
Protocol).

• Persistence storage. Such service offers special facilities for storage, the
simplest form is distributed file systems and the more advanced form has
integrated database. This thesis does not use persistence storage.

• Distributed Transactions. Such service allows multiple read and write
operations to occur atomically. This thesis does not use distributed
transactions.

3.2 Java RMI
Java RMI is the implementation of RPC in Java platform. However, there

is a significant difference between RMI and RPC, RMI deals with methods of
distributed objects, instead of procedures. That’s why Java RMI is also
categorized as distributed object invocations by some people (Coulouris, [6]).

Java RMI (or in more generic term, RPC) itself is a mechanism that allows
a machine to call another procedure located on a remote machine. When calling
such procedure, the parameters are transparently shipped to the remote machine,
and then after the procedure is executed, the result is shipped back to the caller. It

Chapter 3: Java-based Middleware

16

appears as if the procedure call was executed locally. Figure 3-2 shows a basic
principle of RPC between a client and server program.

client

server
time

wait for result

call local procedure
and return result

request reply

call remote
procedure

return from
call

Figure 3-2 Principle of RPC between a client and server program (courtesy of
Tanenbaum and van Steen, 2002).

3.2.1 RPC Failure Semantics
Rothermel [24] outlines four types of RPC failure semantics, which

describes what happens if a failure occurs, i.e.:

• Maybe, it means a request is executed by best-effort method.

• At-least-once, a request is executed at least once. Java RMI uses this type
of RPC failure semantic.

• At-most-once, a request is executed at most once.

• Exactly-once, a request can only be executed exactly once.

3.3 Jini
The second Java-based middleware discussed in this chapter is Jini. As

explained above, Jini is used in this thesis for service discovery protocol, that is to
find a service of transcoder.

As described by Jini datasheet [30], Jini network technology provides a
simple infrastructure for delivering services in a network. Jini technology offers
“network plug and work” mechanism, where a service can be connected to a
network, announce its presence, and the clients that want to use the service can
discover and use it. Although at first, Jini was intended for device discovery, like
printer, nowadays Jini is also intended for discovery of software services and even
Web services.

Application Service

Jini Technology

Java Technology

Operating System

Network Transport

Figure 3-3 The Jini architecture (courtesy of Sun Microsystems, 2001).

Chapter 3: Java-based Middleware

17

One of the design goal of Jini is to provide a system that easily allows
clients to look up new services as they become available [32]. Jini provides a
specialized lookup service to gain this purpose. A service registers itself by
providing a set of (attribute, value)-pairs that describe, for instance, what the
service has to offer, and where it can be contacted. A client can look for a service
by providing a template to the lookup service. The lookup service then returns
information on matching services.

As shown in Figure 3-3, the Jini technology is built on Java technology
and utilizing its object oriented features. It is entirely written in Java and it uses
the mechanisms of RMI.

3.3.1 Architecture of Jini
The architecture of Jini consists of three main components, service, lookup

service and client. A service, which is also called a service provider, provides a
service to the network. A lookup service (or service locator), acts as a broker or
locator between clients and services. A client basically is a component which
makes use of a service.

The heart of Jini is a trio protocol, called discovery, lookup and join.
Discovery occurs when a service or client is looking for a lookup service. Lookup
occurs when a client needs to use a service. Join occurs when a service is plugged
to the network.

When a new service provider is added to a network, it has to find the
lookup service to register its service. After the lookup service has been
discovered, a service provider registers its service object and its service attributes
with the lookup service. The service object contains Java programming language
interface for the service. For example, for printer, the interface may contains print
method. The service attributes contains additional descriptive information, for
example a printer may has a certain speed, either “fast”, “medium” or “slow”.

Network
service

Lookup
service

Network
client

Service
proxy

Service
proxy

1

2

3

4

5

6

Discover
Network service discovers
available lookup services (LUS)

Join
Network service sends
service proxy to LUS

Discover
Network client discovers
available LUS

Lookup
Network client sends request
to LUS to find desired services

Receive
LUS sends registered service
proxy to network client

Use
Network client interacts directly with
network service via service proxy

1

2

3

4

5

6

Figure 3-4 A flow diagram of Jini technology (courtesy of Sun Microsystems,
2001).

Chapter 3: Java-based Middleware

18

Now the service is ready to be used. A client can ask a certain service by
sending request to the lookup service. The client locates the lookup service using
discovery protocol. The client locates a service by sending its type, that is
interface written in Java programming language, and optionally with some
descriptive attributes. The service object is then loaded into the client.

The final stage is to use the service. The client interacts with a service via
a set of interfaces, which are implemented as RMI references to the remote object
that implements the service. These interfaces define a set of methods which can
be used to interface with the service.

3.4 Summary
This chapter discusses about middleware in distributed systems, especially

Java-based middleware. There are two main discussion in this chapter, RMI,
which is Java version of RPC, and Jini, which is a service discovery protocol for
Java.

��������& �

���
�����
���
�������������

This chapter discusses the common infrastructure of transcoding systems.
It starts with an example scenario where we find problems in distributed
multimedia systems. The discussion is followed by some alternatives to solve the
problem and the transcoding infrastructure is introduced here. At the end of this
chapter, the requirements of the transcoding infrastructure is presented.

4.1 Example Scenario
Before discussing the transcoding infrastructure, I will give an example

scenario where the transcoding infrastructure could be fit into. Bill is a
businessman working in a big company in Stuttgart. Now he is going to the
airport because he has an important meeting in San Francisco tomorrow. While
waiting in the airport, Bill opens his notebook and watches the latest business
news from CNBC using WaveLAN in the airport. The news from CNBC, which
has a high-quality resolution, should be transcoded to a lower resolution.

Suddenly he has a video-phone call from his partner in the United States,
who is using a desktop PC to make a call. Bill wears his headset to do a video-
phone using his mobile phone which is connected to a UMTS network. The
quality of the video is not so good because the limitation of UMTS network. In
this case, the video and audio stream from Bill’s partner, who are using a good
connection with a good device, should be transcoded so that it can be transmitted
via UMTS network smoothly.

After Bill has arrived in San Francisco, he takes a taxi to the hotel. In the
taxi, he finds a computer and monitor embedded in the car. While moving to the
hotel, he is watching the latest politic news from CNN. The car itself is connected
to the wireless network and it supports UMTS network. When watching the
video, Bill has experience the quality of the video is changing several times
because the car may change its network to different bandwidth. In this case, the
stream should be adapted according to the car’s network.

Chapter 4: Transcoding Infrastructure

20

4.2 Solution
As explained in Chapter 1 and scenario example in the last section,

nowadays there are many types of computer devices, such as desktop PCs,
notebook PCs, PDAs, mobile phones, which have different capabilities, including
computing power and display capabilities. Table 4-1 shows an example of the
differences of capabilities between some typical devices.

Table 4-1 Different capabilities of some typical computer devices.

Client Devices Processor
Speed

RAM Screen
Size (pixels)

Color
Depth

Speaker

Desktop PC 2 GHz 512 MB 1600 x 1200 32 bit Stereo
Notebook PC 1 GHz 256 MB 1024 x 768 24 bit Stereo

PDA 200 MHz 32 MB 240 x 320 12 bit Mono

Mobile phone - *) - *) 101 x 80 8 bit Mono
*): not available due to lack of documentation

All of those devices may have different connections to the Net, such as
wired LAN or wireless LAN. Furthermore, the users of wireless devices, such as
notebook PC or mobile phones, might move while they are connecting to the Net.
They may sit on cars or trains and their networks are more likely to change from
time to time. One time, they may be connected to a good network, and in another
time, they may enter to a congested network.

Desktop PC
1600 x 1200 pixels
32 bit colors
stereo speaker
100 Mbps LAN

Video stream
MPEG-1
352 x 288, 30 fps
300 kbps

Audio stream
MPEG-1/Audio Layer 3
44 kHz, 16 bits, stereo
128 kbps

Notebook
1024 x 768 pixels
24 bit colors
stereo speaker
11 Mbps WaveLAN

PDA
320 x 240 pixels
12 bit colors
mono speaker
144 kbps GPRS

Mobile phone
101 x 80 pixels
8 bit colors
mono speaker
56 kbps GPRS

Figure 4-1 Heterogeneity of client devices and network connections.

The heterogeneity of devices and their connections leads to the problem in
multimedia communications. As an example, a multimedia service offers a live

Chapter 4: Transcoding Infrastructure

21

movie in MPEG format. A desktop PC connected to a 100 Mbps LAN may
receive it without any problems, a notebook PC connected to a wireless LAN may
have experience watching a non-smooth movie because of its not so good
connection. A PDA perhaps cannot display the movie at all because the display is
too small. The heterogeneity problem is illustrated in

Figure 4-1.

The mobility of clients also lead to the similar problem. The clients may
change their connections to other networks which may be congested or have lower
bandwidth. In other words, the clients will have difficulties getting QoS guarantee
over wireless network because the bandwidth is highly variable [3]. Currently,
there are some proposal to achieve QoS guarantees over wireless network, such as
adaptive QoS. However, in general, the mobility problems is quite complex due
to the nature of wireless network.

4.2.1 Solving Heterogeneity and Mobility Problems
As discussed in the last section, there are two main problems,

heterogeneity and mobility. Some people have been working to solve both
problems [2][8][25]. However, as discussed in the last section, mobility problem
is quite complex and still an open problem nowadays. On the other hand,
heterogeneity problems has been solved by some approaches. In general, there are
two different approaches, server-side approach and network-side approach.

The server-side approach basically provides several different media
formats on the server. It can be implemented by providing several different files
which can be selected by the clients. This is the most common approach used
today. For example, CNN.com nowadays offers three different formats,
QuickTime, Real Player and Windows Media Player, and two different network
connections, Dial-up (28 kbps - 56 kbps) and Broadband (150+ kbps). When a
user want to watch a streaming video from CNN, he should select the format
supported by his hardware/software and the network connection he is using.

The COMCAR project developed a better solution for the server-side
approach, called adaptive mobile application [20]. The adaptive mobile
application, which is installed on the client devices, is able to select the most
appropriate format. The end user does not need to select the format manually,
instead a smart algorithm will select it. The decision itself is based on some
parameters, such as computing power, network bandwidth, available memory,
display capabilities, etc.

The server-side approach has an advantage of easy to implement because it
does not require any additional infrastructures. It simply adds some new formats
on the server and the client selects the most appropriate format for him. However,
this approach also has a disadvantage because each time a new video is added, it
has to be converted to some other formats and it may take a lot of storage capacity
to save the same media in different formats.

In the network-side approach, there is only one media format on the server
and there are some computers on the network, called transcoders, that convert the
streams into different formats on-the-fly.

Chapter 4: Transcoding Infrastructure

22

The advantage of this approach is flexibility because the server now only
store multimedia data in a single format. The disadvantage is the investment cost.
The investment cost is quite high because we have to put some new computers.
However, the transcoders and the server may run on the same machine to reduce
the cost.

This thesis uses the network-side approach to solve the heterogeneity and
mobility problems. The next section discusses the transcoder which is the main
part of the network-side approach.

4.2.2 Transcoders to Solve Heterogeneity and Mobility Problems
The main task of a transcoder is to transcode the media streams into the

appropriate format for the client. This section gives two examples how the
transcoders can solve the heterogeneity and mobility problems.

Server

Transcoder

Client 1 Client 2 Client 3

GSM
13.2 kbps

MPEG/Audio-1 Layer 3
44 kHz, 16 bits, mono
64 kbps

DVI
8 kHz, 4 bits, mono
32 kbps

MPEG/Audio-1 Layer 3
44 kHz, 16 bits, stereo
128 kbps

Figure 4-2 The architecture of a simple transcoding infrastructure.

Figure 4-2 shows the architecture of a simple transcoding infrastructure.
The media on the server which requires 128 kbps bandwidth is transcoded into
three different formats for three different clients with three different connections.
The transcoded streams have lower bandwidth than the original one, it requires 64
kbps, 32 kbps and 13.2 kbps respectively. Furthermore, the DVI and GSM
require less computing power on the processor, compared to MPEG/Audio. The
sound quality of the transcoded streams of course are worse than the original ones.
However, the clients would prefer it rather than listening skipped music or news
due to the lack of the bandwidths.

Chapter 4: Transcoding Infrastructure

23

Another scenario, an end user is listening for an audio stream in a moving
car. While moving, he may change the connection to another network which has
lower bandwidth. In this case, the client can request the transcoder to deliver the
stream in lower bit rate. Figure 4-3 shows one example of this scenario. The
client is moving from a GPRS network with 114 kbps to a new network with 56
kbps. It means that it cannot receive the 64 kbps streams any more, so the
transcoder should send another format of 32 kbps.

Server

Transcoder

MPEG/Audio-1 Layer 3
44 kHz, 16 bit, mono
64 kbps

MPEG/Audio-1 Layer 3
44 kHz, 16 bit, stereo
128 kbps

Client Client

GPRS network
114 kbps

GPRS network
56 kbps

DVI
8 kHz, 4 bit, mono
32 kbps

Figure 4-3 Transcoders for mobile clients.

The introduction of transcoders in the network offers another advantage,
that is the ability to share load between transcoders. The concept is very similar to
the repeaters in TV broadcast. Unfortunately, this advantage can be gained only
in certain situations. The first situation is that the media streams should be
conversational or distributed streams, not on-demand streams. The second
situation is the server, transcoder, and client are not located on the same LAN.

As an example, suppose a server in the United States, offering
MPEG/Audio media 128 kbps stream, is connected to a network with a 1.554
Mbps network. The maximum number of individual users served by the server
simultaneously is 1554 / 128 = 12 users. Now we introduce two transcoders, for
example in Europe and Asia, each of them is connected to a 1.554 Mbps network.
The users from these two continents can receive the streams from the transcoders,
instead of the server. The situation is shown in Figure 4-4. The maximum

Chapter 4: Transcoding Infrastructure

24

number of users in this infrastructure now is 34 users (= 10 + 12 + 12), instead of
12 users.

Server
United States
1.554 Mbps

Transcoder
Europe
1.554 Mbps

Transcoder
Asia
1.554 Mbps

128 kbps

128 kbps

each
128 kbps

each
128 kbps

each
128 kbps

10 clients

12 clients12 clients

Figure 4-4 Another advantage of the transcoding infrastructure.

The transcoder may also perform another function as a cache for the most
accessed media, so that the transcoder do not need to re-download the same media
when another client ask for it. Unfortunately this scenario is only applied to the
on-demand applications, not for conversational and distributed applications.

4.2.3 Lookup Service and Service Broker
Basically there are three basic components in the transcoding

infrastructure, server, client, and transcoder. However, these three components
alone is not enough because there are some other issues which should be solved
by other components.

The first issue is service brokering, how to select the transcoder for the
client from a given source media. The solution used in this thesis for service
brokering is by introducing a new component, called service broker. The service
broker acts as a magic-box which uses an algorithm to select the most appropriate
transcoder for the client.

The second issue is how the service broker knows what kind of transcoders
are available in the network. A common method to solve this problem is by
sending multicast messages to the network to find the transcoder. Unfortunately
this method might not work on some networks because they do not allow
multicast messages. Another method, which is relatively better, is by introducing
a directory service. The directory service stores information about the
transcoders, such as supported media formats, location, network connection, etc.
The directory service suitable for this purpose is Lightweight Directory Access
Protocol (LDAP), which is also a light variant of X-500 naming service. In the

Chapter 4: Transcoding Infrastructure

25

next discussion, the directory service used in the transcoding infrastructure is
called lookup service.

After the introduction to the two new components, the architecture consists
of five elements, server, transcoder, client, service broker and lookup service as
shown in Figure 4-5.

Server

Transcoder

Client

Service
Broker

Lookup
Service

Figure 4-5 Architecture of the network service infrastructure for transcoding
multimedia streams.

4.3 Requirements

4.3.1 Server
A server is offering multimedia stream, either in conversational, retrieval

or distributed applications. There are several protocols which can be used to
deliver the stream, for example HTTP, RTP or even FTP.

In order to maintain compatibility with the existing services, the server is
assumed to be a well-known streams, such as CNN or BBC Radio. This
assumption makes the server does not need to be changed because it simply use
the existing ones. However it makes some limitations to the infrastructure, for
example service broker has no control to the server.

4.3.2 Transcoder
A transcoder is a service which transcodes a stream from one format to

another format which is appropriate for the client. It should register its service to
the lookup service with some attributes, such as its address, supported formats,
location, etc. The detailed attributes is discussed in Chapter 6.

The transcoder is controllable by the client, it means the client can play,
pause, stop, rewind, or fast forward the stream.

4.3.3 Client
A client is an end user which requests a stream and plays it. The client

sends the request to the service broker along with its information, such as display
capabilities and network connection. The service broker then looks for an
appropriate transcoder in the lookup service.

Chapter 4: Transcoding Infrastructure

26

4.3.4 Service Broker
The purpose of the service broker is to find the most appropriate

transcoder for the client and then build service chain from the server to the client.
It finds the transcoder using a directory which is stored in the lookup service.
However, the service broker may also perform other tasks, such load balancing, or
performing security tasks.

4.3.5 Lookup Service
The lookup service is a directory service which stores information about

transcoders, for example its address and supported formats. Since the lookup
service is very critical, it is recommended that a network has more than one
lookup service. However, it depends on the number of clients and the transcoders.
For small network, one lookup service may be enough.

4.4 Summary
This chapter discusses the problems in distributed multimedia systems,

heterogeneity of client devices and their networks as well as client mobility.
There are two different approaches to solve these problems, server-side approach
and network-side approach. The approach used in this thesis is network-side
approach by having several transcoders on the network to convert streams from
the server to the appropriate formats for the clients. The last section of this
chapter covers the requirements for all components of the transcoding
infrastructure, i.e. server, transcoder, service broker and client.

��������' �

������������������
�

This chapter discusses the architecture design of the network service
infrastructure for transcoding multimedia streams. There are two main
discussions in this chapter, service brokering and service chaining. Server
brokering is the algorithm to find the most appropriate transcoder for the client.
Server chaining is the protocol to build path from the server to the client via
transcoder. The last part of this chapter discusses N-level transcoding where the
number of transcoders between server and client is more than one.

5.1 Service Brokering
The main task of the service broker is to find the appropriate transcoder for

the client. The algorithm to find the transcoder presented here is based on the
framework of D. Chen [3]. The basic idea is find all transcoders that is capable of
serving the client and then choose the best one.

5.1.1 Finding Source Format and Destination Format
The first thing to do is to find the source format, that is the media format

from the server, and the destination format(s), that is media format(s) supported
by the client. Finding the destination formats can be done easily because the
client simply tell the service broker which decoders it supports. For example, the
client simply tell the service broker, “I have MPEG and H.263 decoders”.

Finding the source format is not as easy as it sounds. The common
method is by sending a request to the server. It simply asks the server the format
of a given media. Unfortunately, not all servers support this feature, RTSP server
is one example of a server that is able to handle such request. The service broker
can send request to the RTSP server asking the media format it is sending.

Another method is by providing a meta-information about the format. For
example, an end user might tell the service broker about the format of the media
he is requesting. This is the easiest way to get the format, but most end users even
do not know anything about media format.

The last method is by providing a database in the service broker or in
another computer that contains formats of some well-known address. For

Chapter 5: Architecture Design

28

example, the table may look like: “http://tuba:8080/media/starwars.mov” –
MPEG-1 352 x 288 pixels 25 fps. The disadvantage of this approach is that the
administrator of the infrastructure should provide the database.

As a summary, none of the methods above is perfect, but basically the
service broker should know the source format of the source media.

5.1.2 Finding Transcoding Format
After the service broker knows the source and destination formats, it

should find which transcoder is able to transcode the source media (see Figure
5-1). In some cases, the client does need transcoder at all because the source
matches one of the destination formats.

Source Format Destination Formats?
Which transcoder?

Figure 5-1 How to find the transcoder?

Now the real problem becomes clear, the service broker has a list of
transcoders with predefined supported source formats and supported destination
formats, and it should find one that fits the question mark in Figure 5-1.
Unfortunately, the solution is not easy because the transcoder might have been
overloaded or the transcoder does not have enough bandwidth.

In order to find the most appropriate transcoder, the service broker needs
other system information from the client. In general, there are three different
categories of system information that is needed by the service broker, i.e.:

• Network, such as available bandwidth, delay, jitter, etc.

• Hardware, such as processor speed, processor load, screen resolution,
screen color depth, available memory, number of speakers, etc.

• Software, in this case the decoders, such as MPEG, DVI, H.263, etc.
For simplicity, this thesis uses only a few information. For example, in

network category, this thesis uses available bandwidth only. For hardware
category, this thesis uses processor speed, screen resolution and number of
speakers. In the future work, any other information might be used to gain a better
result.

The next step is to build a list of destination formats according to the
system information given by the client. After that, the service broker builds a list
of transcoding formats which matches the given source format and the destination
formats. Figure 5-2 shows the examples of this list. Suppose that the source
format is MP3, 44 kHz, 16 bit, and 2 channels and the client has MPEG, DVI and
GSM decoder. Unfortunately, the client cannot receive MPEG stream directly
because its bandwidth is not enough, it can only receive MP3 22 kHz, 16 bit and 1
channels. The client, although has DVI decoder, cannot receive all formats of
DVI due to bandwidth limitation. It can only receives DVI 8 kHz, 4 bit and 1
channels.

Chapter 5: Architecture Design

29

MP3, 44 kHz, 16 bits,
2 channels

MP3, 44 kHz, 16 bits,
2 channels

MP3, 22 kHz, 16 bits,
1 channels

MP3, 22 kHz, 16 bits,
1 channels

DVI, 8 kHz, 4 bits,
1 channels

GSM Mono

Source Format Transcoding Format Destination Format

MP3, 44 kHz, 16 bits,
2 channels

DVI, 8 kHz, 4 bits,
1 channels

MP3, 44 kHz, 16 bits,
2 channels

GSM Mono

Figure 5-2 An example of a list of transcoding formats and destination formats.

The service broker has decided that there are three possible formats which
can be received the client. Now the service broker should build the transcoding
formats that transcodes the source format to each destination format. In the
example above, the service broker build three transcoding formats.

There is something missing here, how does the service broker know
whether the client’s bandwidth is enough or not. Firstly the service broker is
given the estimated available bandwidth of the client. There are several ways to
detect the available bandwidth in a network, for example using a tool from
Jacobson called PathChar [17]. Secondly, the service broker is supposed to know
the bit rate of each format. For example, the bit rate of MP3, 44 kHz, 16 bit, and 2
channels is around 128 kbps. Basically, the service broker has an algorithm or a
table to calculate the bit rate of each format. This thesis simply uses a table
similar to Table 2-2, but the best method is actually to use an algorithm which is
capable of calculating bit rate for every given media format. Unfortunately, I do
not find an algorithm like this, so I simply use a table. However, this method is
actually also used in QoS Mapping to map a given resource to the desired format.

5.1.3 Assigning Priority to Transcoding Format
The service broker now has to assign priority to each transcoding format.

It is needed because one format may have a better quality than the others. For
example, an end user would prefer to listen MP3 stream, rather than GSM stream
because MP3 stream has much better quality. In this case, MP3 format would
have a higher priority.

The priority decision in this thesis also based on a given table. The table
itself should be given by a person who is responsible for the network. Each item
in this table is a format and its priority, the first item in the table has the highest
priority and the last item has the lowest priority. Table 5-1 shows the priority
table of audio formats. In reality, the table might be much longer than this. Using
this table, the service broker firstly consider MP3, 44 kHz, 16 bit, stereo as the
first priority. If the client is not able to receive this format, the service broker
consider the second one, MP3, 22.05 kHz, 16 bit, stereo, and so on.

Chapter 5: Architecture Design

30

Table 5-1 Priority table of audio formats in the service broker.

Priority Codec Sampling
rates

Bits/
sample

Mono/
Stereo

Bit rates
(kbps)

Compu-
tation

1 MP3 44100 16 Stereo 128 High

2 MP3 22050 16 Stereo 64 High

3 MP3 44100 16 Mono 64 High

4 DVI 22050 4 Mono 64 Low

5 µ-Law 8000 8 Mono 64 Low

6 DVI 11025 4 Mono 45 Low

7 MP3 22050 16 Mono 32 High

8 DVI 8000 4 Mono 32 Low

9 GSM 8000 8 Mono 13.2 Low

In another case, and end user might only want to receive MP3 streams
because he has a powerful processor and wants to listen a “high-quality” audio. In
this case, although he has DVI decoder for example, he tells the service broker
that his machine only supports MP3 decoder. Therefore the service broker will
look at MP3 formats and ignore other formats.

The priority table of video formats is quite similar to Table 5-1, as shown
in Table 5-2.

Table 5-2 Priority table of video formats in the service broker.

Priority Codec Resolution
(W x H pixels)

Frame per
second

Bit rates
(kbps)

Computation

1 MPEG 352 x 288 30 300 High

3 H.263 352 x 288 30 150 Low

2 MPEG 352 x 288 15 150 High

4 H.263 352 x 288 15 75 Low

5 MPEG 176 x 144 30 150 High

6 H.263 176 x 144 30 75 Low

7 MPEG 176 x 144 15 75 High

8 H.263 176 x 144 15 37.5 Low

 The problem becomes quite complicated when the stream contains both
video and audio, how to build the transcoding formats. The service broker can
build them using Table 5-1 and Table 5-2, for example the service broker select
the highest priority for video, MPEG, 352 x 288, 30 fps and then select all audio
formats from the highest priority to the lowest one. In other words, for this video
format, there are combinations of MPEG 352 x 288, 30 fps and MP3 44 kHz, 16

Chapter 5: Architecture Design

31

bit, stereo; MPEG 352 x 288, 30 fps and MP3 22 kHz, 16 bit, stereo; MPEG 352 x
288, 30 fps and MP3 44 kHz, 16 bit, mono, and so on.

 Unfortunately this approach is not reasonable because the service broker
will have too many transcoding formats. Suppose that, the list of audio formats
contains 10 formats and the list of video formats contains 10 formats, the
combination of video and audio formats will contain 100 formats. For this reason,
this thesis uses a table of audio and video formats as shown in Table 5-3.
Although this solution is not perfect because not all possible formats are
considered, but it avoids the increasing number of transcoding formats.

Table 5-3 Priority table of audio and video formats in the service broker.

Priority Format Bit rates
(kbps)

Computation

1 MPEG 352 x 288, 30 fps 428 Very high

 MP3 44 kHz, 16 bit, stereo

2 H.263 352 x 288, 30 fps 278 Low
 MP3 44 kHz, 16 bit, stereo

3 MPEG 352 x 288, 30 fps 364 High

 DVI 22 kHz, 4 bit, mono

4 H.263 352 x 288, 30 fps 214 Very low
 DVI 22 kHz, 4 bit, mono

5 MPEG 176 x 144, 30 fps 278 Very high

 MP3 44 kHz, 16 bit, stereo

6 H.263 176 x 144, 30 fps 140 Low
 MP3 22 kHz, 16 bit, stereo

7 MPEG 176 x 144, 30 fps 214 High

 DVI 11 kHz, 4 bit, mono

8 H.263 176 x 144, 30 fps 107 Very low
 DVI 11 kHz, 4 bit, mono

5.1.4 Cascade Filtering
At this step, the service broker has list of transcoding formats with their

priorities. For each transcoding format, started with the highest priority, the
service broker must perform cascade filtering to all transcoders. The goal is of
course the find the “best” transcoder for the client. Figure 5-3 shows the cascade
filtering in more detail.

Chapter 5: Architecture Design

32

All available
transcoders

(e.g. 100 transcoders)

List 0

All transcoders
that supports
the selected

transcoding format
(e.g. 80 transcoders)

List A

All transcoders
that is currently

transcoding
or have a cache of

source media
(e.g. 10 transcoders)

List B

Idle transcoders
from List A

(e.g. 15 transcoders)

List D

Selected
transcoder

Idle transcoders
from List B

(e.g. 2 transcoders)

Selected
transcoder

List C

Figure 5-3 Cascade filtering to the list of transcoders.

In the beginning, there is List 0 containing all transcoders in the network.
In this example, suppose that there are 100 transcoders in List 0. Using the
selected transcoding format, the service broker select all transcoders which can
transcode from the source format to the selected destination format. They are
stored in a list, called List A.

From List A, the service broker performs a filter again to find all
transcoders which is currently transcoding the source media. The purpose of this
filter is to save bandwidth from the server to the client. For example, if the user is
asking for CNN video and currently there is a transcoder that is transcoding the
video, that transcoder is a good candidate to be the selected transcoder. However,
this purpose can be achieved in conversational and distributed applications, not in
retrieval applications. For retrieval applications, the query might be different, for
example, which transcoders have the cache of the requested stream. The result of
this filter is stored in a list, called List B.

From List B, the service broker finds all transcoders which are capable of
serving a new client. This new list, called List C, can be built by considering
some QoS parameters which is described in the next section. The filtering itself is
done by comparing each required QoS parameter with each available QoS
parameter. For example, a transcoding format requires QoS parameters of 128
kbps bandwidth, 200 MHz processor and 1 MB available memory. The service
broker then should only filter transcoder which has at least 128 kbps available
bandwidth, 200 MHz and 1 MB available memory.

From List C, the service broker simply select one transcoder. The most
common method to do it is by randomly selecting one transcoder from the list.
Another common method is round-robin, but it is quite difficult to be applied here
because there may be more than one service broker in the network.

Chapter 5: Architecture Design

33

In some cases, List C contains no transcoder, it means there is no idle
transcoder right now. What should be done by the service broker is to use List A
and find all transcoders which is capable of serving a new client. From this list,
called List D, the service broker simply select one transcoder randomly or by
other methods.

For optimization purpose, List B and List C can be built using a single
query. It means the service broker asks the transcoder whether it is currently
transcoding the source media and is able to serve a new client.

5.1.5 QoS Parameters
There is an unanswered question in cascade filtering algorithm, how does

the transcoder knows whether it is capable of serving a new client or not. The
purpose of this query is to get a QoS guarantee so that the client receive a
relatively good quality of stream. Because it deals with QoS guarantee, this query
involves several QoS parameters from the client as well as the transcoder.

As explained in Chapter 2, there are three QoS parameters, i.e. application,
system and network QoS parameters. The application QoS parameters supported
in this thesis are given by the users manually. For example, if the user wants to
listen high quality audio, he should enable MP3 decoder and disable other
decoders only so that the service broker will consider MP3 formats only. Another
scenario, when a user need CPU power to do other tasks, it may disable MPEG
decoder so that the service broker select formats which needs less CPU power.
The system QoS parameters which are used by the service broker include system
information from the operating system, such as processor load, available memory,
etc. The network QoS parameters which are used by the service broker includes
network characteristics, such as bandwidth, latency, jitter, etc.

When the service broker receive request from a client for a stream, the
client actually also gives some QoS parameters. Since each transcoder also has
some QoS parameters, the service broker simply matches the parameters from the
client and the transcoder. If the QoS parameters of a transcoder satisfy the
requested QoS parameters from the client, it means the transcoder is capable of
serving the client.

5.1.6 Flow Chart
Figure 5-4 shows the overall flow chart of service brokering. In fact it

summarizes the service brokering steps which I explain above.

Chapter 5: Architecture Design

34

Start

Finds the source format.
Builds a list of destination formats and

a list of transcoding formats.

Pick up one transcoding format
according to the priority table.

If no more format to be picked up,
then give up.

Build a list of transcoders that supports
the selected transcoding format.

This list is called List A.

How many
transcoders
in List A?

From List A, build a list of transcoders
that is currently transcoding

or have the cache of source media.
This list is called List B.

How many
transcoders
in List B?

Ask the transcoder whether
it is able to serve a new client

using the given QoS parameters.

Is transcoder
able?

= 0

= 1

> 1

Ask the transcoder whether
it is able to serve a new client

using the given QoS parameters.
= 1

A

B = 0

CY

From List B, build a list of transcoders
that is capable of serving a new client

using the given QoS parameters.
This list is called List C.

Is transcoder
able?

CY

> 1

How many
transcoders
in List C?

B = 0 D

N

>= 1

(continued in the next page)

Chapter 5: Architecture Design

35

Finish

Select one transcoder and
then activate it.

Activate the transcoder.

From List A, build a list of transcoder
which is capable of serving a new client

using the given QoS parameters.
This list is called List D.

How many
transcoders
in List D?

>= 1

B

D

A= 0

C

Figure 5-4 Flowchart of service brokering.

5.2 Service Chaining
As explained in the beginning of this chapter, service chaining is the

protocol to build path from the server to the client via transcoder. The basic idea
is the service broker searches a directory in the lookup service to select a
transcoder and then gives this information back to the client. The client then
could listen to the media stream from the selected transcoder. In general, there are
three protocols in service chaining i.e.:

• Finding lookup service.

• Service registration.

• Requesting transcoder service.

5.2.1 Finding Lookup Service
When a component, either transcoder, service broker or client, is attached

on a network, it has to find the lookup service. In general, there are three different
methods which can be used to find the lookup service on a network, i.e.:

• Multicast request

• Multicast announcement

• Unicast discovery

Multicast request is done by sending a multicast message to a well-known
address on a network and waits until the lookup service respond to it. Multicast
request uses a UDP protocol while the respond from the lookup service uses a
TCP protocol. Since UDP packet may lost, the first multicast request may not

Chapter 5: Architecture Design

36

reach the lookup service. The most common method to solve this problem is by
sending several multicast requests, for example sending 7 multicast requests every
5 seconds. The multicast request has a disadvantage because some networks do
not allow multicast messages or no lookup service is available in the multicast
range.

Multicast announcement is done by sending multicast messages from the
lookup service to a well-known address. The client that listens to this multicast
message may add the lookup service to its list so that it can be used in the future.
The multicast announcement is sent using UDP protocol periodically, for example
every 120 seconds. The disadvantage of multicast announcement is similar with
the multicast request. In addition the client may need the lookup service before it
receives the announcement, in other words, a new client should wait for the
announcement message.

Unicast discovery is done by entering the address of the lookup service
manually. It can be entered using a dialog box, like setting a proxy in a Web
browser, or using a configuration file. This method works on all cases, unlike the
other two methods. The disadvantage is that the client must know the address of
the lookup service, if the client is moving to another network, it must know the
address of the new lookup service.

The best method to find lookup service is by combining the three methods
above. The client is given well-known addresses of some lookup services. If they
are unreachable, the client can send multicast message to find other lookup
services. In the mean time, the client should listen for multicast announcement in
case there is a new lookup service installed on the network.

Since lookup service is very important, usually there are more than one
lookup services on a network to prevent single point of failure. Whenever a
lookup service crashes, the client can use another lookup service.

5.2.2 Service Registration
After the lookup service is known, the transcoder and the service broker

have to register with it. The registration of service broker is quite simple because
it does not require any attributes. It is done by sending a TCP packet to a lookup
service. If the lookup service is successfully added the service to its directory, it
will return a unique service ID. The generation of a unique service ID is
discussed later. If the registration fails, the service broker should find another
lookup service and register with it.

The service ID is then used by the service broker to register with other
lookup services. When a new lookup service is added to the network, the service
broker should use the same service ID to register with it.

5.2.2.1 Registration Protocol for Service Broker

Figure 5-5 shows the example of service broker registration using
multicast request. There are two lookup services and one service broker here.
Firstly, the service broker sends multicast request to find lookup services. The
two lookup services respond it with multicast respond. In this case, the service

Chapter 5: Architecture Design

37

broker simply selects the first respond from lookup service 1 and register its
service with it. The lookup service 1 adds the service broker to its database and
then returns a service ID. The service ID is used to register with another lookup
service, that is lookup service 2.

Service Broker Lookup Service 1 Lookup Service 2

Multicast request

Multicast response

Multicast response

Service registration

Service ID

Service registration

Time

Figure 5-5 Registration of service broker using multicast request.

Suppose that the lookup service 1 crashes after sending multicast response.
The service registration will fail because the lookup service is no longer available.
The service broker then use another lookup service to register its service.

Another scenario, suppose that lookup service 1 crashes after sending the
service ID. In this case the service broker has got a service ID so that the service
broker can use it to register with another lookup service.

Service Broker Lookup Service 1 Lookup Service 2

Multicast announcement

Service registration

Service ID

Service registration

Time

Figure 5-6 Registration of service broker using multicast announcement and
unicast discovery.

Figure 5-6 shows an example of registration of service broker using
multicast announcement and unicast discovery. Firstly, there is only lookup
service 1 and the service broker finds it using unicast discovery which is given by
the user. The service broker registers with lookup service 1 and gets a service ID.
After some time, a new lookup service, that is lookup service 2, is added to the
network. It sends multicast announcement so that every hosts in the network

Chapter 5: Architecture Design

38

know there is a new lookup service. The service broker then use the same service
ID to register its service with lookup service 2.

The service broker is registered with a lookup service for a limited time
only. In other words, the service broker leases a service ID from the lookup
service. After the leasing time is expired (or almost expired), the service broker
should renew its registration or the lookup service will assume the service is no
longer available.

5.2.2.2 Registration Protocol for Transcoder

The registration protocol basically is very similar to the registration of
service broker. The only difference is that the transcoder registration needs some
additional attributes, for instance supported source media formats, supported
destination formats, network bandwidth and location. The other processes is the
same with the registration of service broker. A service of transcoder is also given
a unique service ID which is leased for a limited time. The transcoder should
renew it when the leasing time is almost expired.

5.2.2.3 Service ID Generator

A unique service ID is important to identify a service, either transcoder or
service broker. It also prevents a duplicate registration among lookup services.
There are many ways to generate a unique service ID, such as using counter,
timestamp or random number.

In this thesis, the service ID is a 128 bits (or 16 bytes) number which is a
combination of timestamp, random number and host address. The service ID uses
these combinations to guarantee that the possibility of two services have the same
ID is almost zero. The service ID uses combination of timestamp and random
number, instead of counter because sometimes we need to know when a service is
registered or when a service is going to be expired. Figure 5-7 shows the diagram
of the service ID.

time_low
time_
mid

time_
hi

clock_
seq

node

015 78

version variant

Figure 5-7 A time diagram of a service ID.

The time_low, time_mid and time_hi field are set to the least, middle and
most significant bits respectively of 60 bit timestamp measured in 100 nanosecond
units since midnight, October 15, 1582 UTC. The version field indicates the
version, whether 0x1 or 0x4. The variant field must be set 0x02. The clock_seq
field is set a 14 bits random number. The node is set to the hardware address of
the client.

Chapter 5: Architecture Design

39

5.2.3 Requesting Transcoder Service
At this step, the service broker has registered its service to the lookup

service and all transcoders has registered their services to the lookup service as
well. When a client request for a media stream, the transcoding infrastructure
should be able to find the appropriate transcoder, using service brokering
algorithm, and then request the transcoder to start transcoding the stream.
Basically there are two approaches which can be used to request a transcoder
service, i.e.:

• Client-initiated request.

• Server-initiated request.

5.2.3.1 Client-initiated Request

Client-initiated service request means that the client initiates a request to
the service broker to find the transcoder. Figure 5-8 shows both media streams
and control messages between components of the transcoding infrastructure. The
number on each arrow indicates the step of service chaining protocol, it is
discussed later.

Server

Transcoder

Client

Service
Broker

Lookup
Service

10

11

1

4

6

3

12

9, 13

2

8

5

7

media streams

control messages
for media streams

control messages
to establish a
connection

Figure 5-8 Stream and control flow of the client-initiated request.

The media stream flows from the server to the transcoder, where it is
transcoded to another format, and then to the client. The control messages is
divided into two types. The first type is control messages to establish a
connection from the server to the client via transcoder. The second type is control
messages to control the media, such as play, pause, rewind and fast forward.

Chapter 5: Architecture Design

40

Since it is client-initiated request, the client should ask the service broker
to find the most appropriate transcoder. The service broker itself can be found by
sending a request to the lookup service. After the client receives the service
broker address, it sends information about requested media stream as well as
client’s capabilities, such as processor type, monitor resolution and network
connection, to the service broker. The service brokering algorithm is performed in
this step.

After the transcoder has been found, the service broker then sends a
request to the transcoder to send the transcoded stream to the client. The
transcoder itself request the original media stream from the server and then creates
a transcoder session to transcode it. Along with it, the transcoder sends
information, which contains IP address and port number, back to the service
broker. The service broker sends this information to the client so that the client
can receive the stream.

The explanation of each arrow in Figure 5-8 is as follows:

1. The client asks the lookup service for a service broker.

2. The service broker address is returned to the client.

3. The client asks the service broker to find one or more transcoder.

4. The service broker asks the lookup service a list of transcoders which may be
appropriate for the client.

5. The lookup service returns a list of transcoders. The service broker then select
one which will serve the client using service brokering algorithm.

6. The service broker sends a request to the selected transcoder to send a media
stream.

7. The transcoder returns transcoder session address to the service broker.

8. The service broker returns transcoder session address to the client.

9. The transcoder asks the server to send a media stream to it.

10. The server starts sending the stream.

11. The transcoder transcodes the stream and then transmits it to the client.

12. The client control the transcoder to play, stop, pause, rewind or fast forward
the stream.

13. The transcoder forward the control from the client to the server.

There is a note in step 12 and 13, some streams, such as conversational or
distributed applications, do not allow controls, such as pause or fast forward. For
example a live football video cannot be fast forwarded because we do not know
the future. In this case, the client is not be able to control the stream. It may send
a control message to the transcoder but the transcoder will do nothing.

The service broker address might be cached in the client in order to
improve performance. Next time, when a client requests another stream, step 1
and 2 can be eliminated, and the client can send the request directly to the service
broker in step 3. The same thing also happens in the service broker, it may caches

Chapter 5: Architecture Design

41

the list of transcoders. When another client request the same stream and the same
format, it looks in its cache first.

The complete time diagram for a client-initiated request for a media stream
is shown in Figure 5-6.

Client Lookup Service Service Broker Transcoder Server

Find service broker

Service broker
address

Find transcoder

Find transcoder

Transcoder
address(es)

Add client

Transcoder
session address

Transcoder
session address

Request stream

Stream
Stream

Control
Control

Time

Service
brokering

Figure 5-9 Time diagram of client-initiated request for multimedia streams.

When a client does not want to receive the stream any longer, it should
send a message to the transcoder. The transcoder then send stop message to the
server to stop the transmission. If the client does not send this message, the
transcoder will always send the stream even if the client is not listening. It will
create garbage of streams. In some situation, garbage of streams may exist in the
network, for example the client crashes before sending stop message to the
transcoder. The elimination of this garbage needs another protocol and is
discussed later.

5.2.4 Server-initiated Request
Service-initiated request means that request to the service broker is

initiated by the server. Figure 5-8 shows media streams and control messages
between components of the service-initiated request.

Chapter 5: Architecture Design

42

Server

Transcoder

Client

Service
Broker

Lookup
Service11

12

media streams

1

5

4

7

13

14

control messages
for media streams

control messages
to establish a
connection

2

10

3

9

6

8

Figure 5-10 Architecture of the server-initiated service chaining.

 The protocol is quite different from the client-initiated request because
here the client does not need to know about the service broker. It simply sends a
request to the server and the server returns back the transcoder address in which
the client should listen for the media stream.

Firstly, the client send a request to the server for a media stream. The
client has to give information about its capabilities, such as processor load,
available memory, network bandwidth, etc. The server then should find the
service broker in order to find the appropriate transcoder. If the server does not
know the address of the service broker yet, it has to send request to the lookup
service.

After the server has the address of the service broker, it sends message to
the service broker. The service broker, using the directory in the lookup service,
asks a list of transcoders and perform service brokering on this list.

If the service broker find one appropriate transcoder, it send request to the
transcoder to create a new transcoder session. The transcoder session address
contains the address and port number on the receiver side, to receive stream from
the server, and on the sender side, to send the transcoded stream to the client. The
transcoder session address is sent back to the server. The server uses the address
on the receiver side to start sending the stream and sends the address on the sender
side to the client.

The client, after receiving the transcoder session address, opens connection
to the given address and port number and listens for the incoming stream. After
this step, the client should be able to receive the transcoded stream. Like the

Chapter 5: Architecture Design

43

client-initiated service, the client can control the stream, but it depends on the type
of the stream.

When a client does not want to receive the stream any longer, it should
send a message to the server. The server then sends the stop message to the
transcoder. Alternatively, the client can send stop message to the transcoder, and
then the transcoder sends the stop message to the server.

The explanation of each arrow in Figure 5-10 is as follows:

1. The client asks the server for a media stream.

2. The server asks the lookup service for a service broker address.

3. The service broker address is returned to the server.

4. The server asks the service broker to find a transcoder.

5. The service broker asks the lookup service a list of transcoders which may be
appropriate for the client.

6. The lookup service returns a list of transcoders. The service broker then select
one which will serve the client using service brokering algorithm.

7. The service broker sends a request to the selected transcoder to send a media
stream.

8. The transcoder returns transcoder session address to the service broker.

9. The service broker returns transcoder session address to the server.

10. The server sends the transcoder session address to the client.

11. The server starts sending the stream.

12. The transcoder transcodes the stream and then transmits it to the client.

13. The client control the transcoder to play, stop, pause, rewind or fast forward
the stream.

14. The transcoder forward the control from the client to the server.

The complete time diagram for a server-initiated request for a media
stream is shown in Figure 5-6.

Chapter 5: Architecture Design

44

Service
brokering

Client Transcoder Service Broker Lookup Service Server

Request stream

Service broker
address

Find transcoder

Find transcoder

Transcoder
address(es)

Add client

Transcoder
session address Transcoder

session address

Stream
Stream

Control
Control

Time

Service broker
address

Transcoder
session address

Figure 5-11 Time diagram of server-initiated request for multimedia streams.

5.2.4.1 Comparison of Client-initiated and Server-initiated Request

The client-initiated and server initiated request have advantages and
disadvantages. The advantage of client-initiated request is that the server does not
need to be replaced. It can be any type of well-known servers, such as HTTP
server, RTP server or RTSP server. In server-initiated request, the server must be
a “new” server because it has to know the availability of the service broker.

The advantage of server-initiated request is that request from the client is
quite simple, thus the client becomes thin. The client simply request to the server
and then the server returns back the address of the transcoder to which the client
should receive the stream. The client even does not need to know about service
broker nor lookup service. In the next discussion, I will focus only on client-
initiated request.

5.2.5 Streams Garbage
In reality, the client may crash while receiving a stream from the

transcoder. If this happens, the transcoder will always transcoding the stream
because it does not receive stop message from the client. When a client comes up
from the crash and asks for the same stream, the service broker may select another
transcoder. This scenario creates streams garbage which sends unnecessary
packets to the network.

Chapter 5: Architecture Design

45

There are two approaches which can be used to eliminate garbage of
stream, i.e.:

• The transcoder always sends a ping message to each client every interval
of time, for example every 30 seconds. If a client does not respond to the
ping message for a given interval, for example 120 seconds, the transcoder
simply stops the stream.

• The client always sends I’m alive message to the transcoder every interval
of time, for example every 30 seconds. If the transcoder does not receive
I’m alive message from any clients in a given interval, for example 120
seconds, it simply stops the stream.

The architecture of this thesis uses the second approach because it requires
one message only, rather than two messages.

Figure 5-12 shows the time diagram of elimination of streams garbage.
When a client is receiving a stream, it sends I’m alive message to the transcoder
periodically. When the client crashes, the transcoder does not receive I’m alive
message in a period of time, so that it must stop the stream.

Client Transcoder Server

Stream
Stream

Stop

Time

crash

I'm alive

Stream
Stream

Stream
Stream

timeout

Stream
Stream

Figure 5-12 Time diagram of elimination of streams garbage.

5.2.6 Transcoder Handover
Transcoder handover allows a client to switch to another transcoder

whenever it needs a different format. For example, a client, which is moving from
a 144 kbps network to a 64 kbps, may need to change from 128 kbps MP3 format
to 64 kbps MP3 format.

The protocol for transcoder handover is quite similar to the setup of
transcoder. The only difference is that the client should stop the stream from the
current transcoder and then send another request to the service broker. The rest of
the protocol does not need to be changed. Furthermore, in on-demand stream, the
new request to the service broker might contain the position of the current stream

Chapter 5: Architecture Design

46

so that the client do not need to play the stream from the beginning. The client
will have experience that the stream is being played continuously but with
different format.

The only problem with this protocol is that the transcoder setup might need
some time within a few seconds. In other words, the client will notice a paused
stream when the new transcoder is being initialized. A solution to this problem is
by waiting the new stream before stopping the current stream. After the new
stream from the new transcoder is arrived, the client sends a stop command to the
old transcoder.

5.3 Transcoder Configuration
There are two common methods to put the transcoders, flat and

hierarchical. The flat method is very simple, each transcoder is given a specific
task, to transcode some arbitrary formats to other formats. Coulouris, et. al. [6]
proposed hierarchical transcoding infrastructure as another alternative. In this
infrastructure original stream is downgraded on each level of transcoding.

As a simple example, suppose that an administrator is designing a network
service infrastructure for transcoding MP3, 44 kHz, 16 bit, stereo to six different
formats, i.e. MP3, 32 kHz, 16 bit, stereo; MP3, 32 kHz, 16 bit, mono; DVI, 22
kHz, 4 bit, mono; DVI, 11 kHz, 4 bit, mono; DVI, 8 kHz, 4 bit, mono and GSM-
Mono. Using the flat infrastructure, the configuration may look like Figure 5-13.

MP3, 44 kHz, 16 bits, stereo
128 kbps

MP3, 32 kHz,
16 bit, stereo

64 kbps

DVI, 11 kHz -
4 bit, mono

45 kbps

DVI, 22 kHz
4 bit, mono

64 kbps

MP3, 16 kHz,
16 bit, mono

32 kbps

GSM Mono
13.2 kbps

DVI, 8 kHz,
4 bit, mono

32 kbps

1

2 3 4 5 6 7

Transcoder 1 Transcoder 2 Transcoder 3

Figure 5-13 Example of flat transcoding infrastructure.

There are three transcoders in this example. All of them support MP3, 44
kHz, 16 bit, stereo as their source formats. The same three transcoders above can
be configured using hierarchical infrastructure as shown in Figure 5-14.

Chapter 5: Architecture Design

47

MP3, 44 kHz, 16 bit, stereo
128 kbps

MP3, 32 kHz,
16 bits, stereo

64 kbps

DVI, 11 kHz,
4 bits, mono,

45 kbps

DVI, 22 kHz,
4 bits, stereo

64 kbps

MP3, 32 kHz,
16 bits, mono

32 kbps

GSM Mono
13.2 kbps

DVI, 8 kHz,
4 bits, mono

32 kbps

1

23

4567

Transcoder 1

Transcoder 2 Transcoder 3

Figure 5-14 Example of hierarchical transcoding infrastructure.

Each configuration has advantages and disadvantages. The advantage of
hierarchical infrastructure that it saves a lot of bandwidth. As an example there
are six users who requests six different formats provided by the infrastructures
above. In flat infrastructure, there is a 3 x 128 kbps = 384 kbps traffic from the
server to this network. In hierarchical infrastructure, there is a 128 kbps traffic
only.

However, the hierarchical infrastructure has a disadvantage because it
introduces single point of failure. If Transcoder 3 in Figure 5-14 crashes, the
whole users is not able to receive stream at all. In the flat structure, only users
who request GSM and DVI, 8 kHz, 4 bit, mono are not able to receive the stream.

This thesis uses the configuration of flat infrastructure because the
implementation of this thesis only allows one-level transcoding.

5.4 N-Level Transcoding
The discussion above assumes there is only one transcoder between server

and client. In reality, we might need more than one transcoder because there is no
transcoder that is supporting the transcoding format. In another scenario, we
might need hierarchical infrastructure as shown in Figure 5-14.

The solution for N-level transcoding is not simple and I do not implement
it in this thesis. I only discuss how to construct N-level transcoding theoretically.
The main idea is by creating a directed and weighted graph for the transcoders and
using shortest path algorithm to select the chain. The detailed steps is shown in
Figure 5-15. Basically the concept is similar to 1-level transcoding except that
now the algorithm involves a directed and weighted graph.

Chapter 5: Architecture Design

48

Given server, transcoders and client

Construct a directed and weighted graph

Perform shortest path algorithm

Perform service chaining

Service
brokering

Service
chaining

Start

Finish

Figure 5-15 Service brokering and service chaining in N-level transcoding.

In the first step, the service broker is given a server, one or more
transcoders, and a client. The purpose of service brokering algorithm is to find a
path from the server to the client via transcoders. In order to achieve this purpose,
the service broker then constructs a directed and weighted graph. Using this
graph, the path from the server to the client itself can be determined by
performing a shortest path algorithm.

The vertices, edges, and cost of the directed and weighted graph can be
explained as follows:

• Vertices are the server, the transcoders and the client.

• The edges represents the network connecting two vertices which the
destination format of one vertex matches the source format of another
vertex. In this thesis, it assumed that every transcoders are connected each
other.

• The costs of the edges are the QoS parameters in the transcoder and in the
network connecting two transcoders.

5.4.1 Constructing Directed Graph
The first thing to do in N-level transcoding is to construct a directed graph

for the transcoders. To make the explanation easier, let assume there is four
transcoders in the network as shown in Figure 5-16. The first transcoder, T1,
supports one source format, A, and three destination formats, B, C and G. The
second transcoder, T2, supports two source formats, A and B, and three
destination formats, D, E and F. The third transcoder, T3, supports three source
formats, B, C and D, and three destination formats E, F and Y. The fourth
transcoder, T4, supports three source formats, C, E and F, and two destination
formats D and Z.

Chapter 5: Architecture Design

49

T1 T2 T3 T4

A A B B D C F

B G D E F E F Y D Z

EC

C
Figure 5-16 Example of four transcoders in a network.

From these four transcoders, the directed graph can be constructed.
Firstly, we start from the first transcoder which supports destination format B, C,
and G. We can draw edges to T2 and T3 because these two transcoders support
source formats B. We can also draw other edges to T3 and T4 because these two
transcoders support source formats C. Since no transcoder supports format G, we
do not need to connect G to any other vertices. Next, we move to T2 and look that
T2 supports three destination formats, D, E, and F. We can draw an edge to T3
because this transcoder support source format D. We can also draw edge to T4
because this transcoder support source formats E and F. These steps is done
repeatedly until all transcoders are included in the graph. Figure 5-19 shows the
directed graph for these transcoders.

T1 T2

T3 T4

A A

B

B

C

E F

D

E

F
Y

D

Z

G

C

Figure 5-17 Directed graph for the transcoders.

The graph in Figure 5-17 relatively static because the configuration of
transcoders is not likely to be changed from time to time. This might be used for
optimization purpose because each time a client requests for a stream, the graph
does need to be reconstructed. It needs to be reconstructed, for example when a
new transcoder is added to the network or a transcoder is removed from the
network.

5.4.2 Optimizing Directed Graph
The directed graph in Figure 5-17 is quite complicated although there are

only four transcoders. The graph would be more complicated as the number of

Chapter 5: Architecture Design

50

transcoder increases. Fortunately, the directed graph can be optimized by
reducing the number of edges from one transcoder to another transcoder. For
example, there are two edges from T1 to T3, two edges from T2 to T4 and two
edges from T3 to T4. We do not need more than one edge to connect two same
transcoders, so that we “remove” it from the graph. However, we do not really
remove these edges because the format might be requested by a client in a later
time. For example, if we remove edge F from T2 – T4 and T3 – T4, when a client
requests format F, the graph will not give any result.

The optimization itself can be based on the computing power of the
transcoding process. For example, if the computing power of transcoding A to C
is higher than transcoding A to B, we can remove edge C from T1 to T3. If the
optimization is performed, the directed graph would be like Figure 5-18.

T1 T2

T3 T4

B

B

C

E

D

E

Y

D

F

F

C

G

Figure 5-18 Directed graph after optimization.

5.4.3 Adding Client and Server
Now, a client is requesting a media from the server, for example in format

A. The client itself supports for example two different formats, Y and Z. The
task of the service broker is to find the path from the server to the client via the
directed graph in Figure 5-19.

Like 1-level transcoding, the service broker should firstly build the table of
transcoding formats and then give priority to each format. In this case, there are
two transcoding formats only, i.e. A � Y and A � Z. From the priority table, for
example A� Y has higher priority than A � Z. The service broker then consider
A � Y and build a new directed graph as shown in Figure 5-19. There are two
new vertices in this graph, one vertex represents the client and another vertex
represents the server.

Chapter 5: Architecture Design

51

T1 T2

T3 T4

S

C

A A

B

B

C

E

D

E
Y

D

Figure 5-19 Directed graph for the transcoders, the server and the client.

 Using an algorithm, which is discussed later, the service broker then finds
the best path from the server to the client. However, in some cases, the service
broker might not be able to do that because there is no end-to-end QoS guarantee
in all possible paths. In this situation, the service broker can build another
directed graph using the second transcoding format, A � Z. Figure 5-20 shows
the directed graph if the transcoding format A � Z is selected.

T1 T2

T3 T4

S

C

A A

B

B

C

E

D

E
Z

D

Figure 5-20 Another directed graph for the transcoders, the server and the client.

The graph in Figure 5-19 and Figure 5-20 looks very similar, but it might
give a different solution to the client. For example, if T3 is overloaded, the graph

Chapter 5: Architecture Design

52

in Figure 5-19 would not give any solutions, but the graph in Figure 5-20 might
give a solution when T4 is idle.

From the graph in Figure 5-19, the chain can be built from the server to the
client via T1 and T3 (see Figure 5-21a) or via T2 and T3 (see Figure 5-21b). The
chain can even be built from all transcoders, via T1 - T2 – T4 – T3. The
algorithm to determine the best path will be discussed later.

T1 T2

T3 T4

S

C

A A

B

B

C

E

D

E

Y

D

T1 T2

T3 T4

S

C

A A

B

B

C

E

D

E

Y

D

(a) (b)

Figure 5-21 Two possible chains from the server to the client.

5.4.4 Constructing Weighted Graph
Like 1-level transcoding, Quality of Service is an important factor to select

the transcoders. In N-level transcoding, the QoS parameters can be included as
the weight of the graph edges. Since the number of QoS parameters is more than
one but each edge of the graph only allows a single value, the QoS parameters can
be represented as a single value using percentage.

As an example, we consider four QoS parameters, i.e. current processor
load, required memory, required computing power and required bandwidth. If we
want to calculate the value of edge between T1 and T3, the processor load is
calculated on T1 because this transcoder will transcode format A to format B.
The required memory is calculated on T1 based on the memory required to
transcode format A to format B. The required computing power is calculated
based on how much computing power is needed to transcode format A to format
B. The required bandwidth is calculated on the network between T1 and T3 to
send format B. As mentioned above, the estimated bandwidth between two nodes
might be calculated using a tool such as PathChar [17].

In general, the formula to calculate the edge values can be calculated as
follows:

Chapter 5: Architecture Design

53

Value = α.(current processor load) + β.(required memory) +

 χ.(required computing power) + δ.(required bandwidth)

where

 α + β + χ + δ = 1

The value of α, β, χ and δ can be given equally, that is 0.25, or non-
equally. For example, if the required bandwidth is the most important factor, δ
can be given 0.4 while α, β and χ are 0.2 respectively.

Since the value of each edge changes from time to time, the service broker
should periodically send a request to each transcoder to update the edge’s values.
Another way to do this is by allowing the transcoders to broadcast their current
system information periodically.

Figure 5-22 shows the example of the weighted and directed graph for the
transcoders above.

T1 T2

T3 T4

S

C

0.2 0.5

0.15

0.1

0.25

0.15

0.4

0.25

0.35

0.4

Figure 5-22 Weighted and directed graph for the transcoders.

5.4.5 Shortest Path Algorithm
After the directed and weighted graph has been constructed, the next step

is to perform shortest path algorithm. There are some algorithms to find the
shortest path of a directed and weighted graph, such as bread-first search [1],
Dijkstra [1], and Floyd [1]. This thesis uses Dijkstra algorithm because it is
simple and relatively fast. Aho, et. al. [1] discusses Dijkstra algorithm in more
detailed.

Since Dijkstra algorithm can only be performed on a static graph, the value
of each weight during service brokering algorithm is assumed to be constant.

Chapter 5: Architecture Design

54

Table 5-4 and Figure 5-23 shows Dijkstra algorithm when it is performed on the
directed and weighted graph in Figure 5-22.

Table 5-4 Finding the shortest path using Dijkstra algorithm.

 S w D(T1) D(T2) D(T3) D(T4) D(C)

0 {S} - 0.2 0.5 ∞ ∞ ∞

1 {S, T1} T1 0.2 0.35 0.3 0.45 ∞

2 {S, T1, T3} T3 0.2 0.35 0.3 0.45 0.65

3 {S, T1, T3, T2} T2 0.2 0.35 0.3 0.45 0.65

4 {S, T1, T3, T2, T4} T4 0.2 0.35 0.3 0.45 0.65

5 {S, T1, T3, T2, T4, C} C 0.2 0.35 0.3 0.45 0.65

T1 T2

T3 T4

S

C

0.2 0.5

0.15

0.1

0.25

0.15

0.4

0.25

0.35

0.4

0.2

0.3

0.35

0.45

0.65

Figure 5-23 Finding the shortest path using Dijkstra algorithm.

From Table 5-4, the shortest path from the server to the client is 0.65 and it
can be built via T1 and T3. Like 1-level transcoding, the final thing to do before
building service chain is to make sure that the selected path has end-to-end QoS
guarantee. In some cases, the shortest path might not provide end-to-end QoS
guarantee, so the service broker should not build the chain. Once again, if the
selected path cannot give QoS guarantee, the service broker should use another
transcoding format which has lower priority.

5.4.6 Flow Chart
Figure 5-24 shows the complete flow chart of service brokering and

service chaining of N-level transcoding. Firstly the service broker has a list of

Chapter 5: Architecture Design

55

transcoders. From this list, the service broker is able to build a directed and
weighted graph of all transcoders. The graph should also be optimized if
necessary.

When a client request for a stream from a given server, the service broker
is able to build a transcoding format and give priority to each format (see section
5.1.2 and 5.1.3 for detailed explanation). From this list, the service broker select
the highest priority and build a complete directed and weighted graph. This graph
contains the server, the client, and all transcoders.

After performing the shortest path algorithm, the service broker send a
request to all selected transcoders whether they are able to serve a client or not. If
all transcoders answer the request with “yes”, then the service broker build a chain
from the server to the client via them. If one ore more transcoder answer with
“no”, the service broker pick the second highest priority of transcoding format and
then build another graph. This stages are repeated until no transcoding is
available to be picked up.

Start

Is able?

Given the transcoders

Finish

Build a directed and weighted
graph for all transcoders

Given the server and the client

Pick up one format to
the priority table.

If no format to be picked up,
 then give up

Build a list of transcoding formats

Build a complete directed and
weighted graph which contain

 the server, the client and
all transcoders

Perform shortest path algorithm

Perform service chaining

Ask the selected transcoders
whether they are able to serve the

client or not

A

A

Y

N

Optimize the graph

Figure 5-24 Flow chart of service brokering and service chaining of N-level
transcoding.

Chapter 5: Architecture Design

56

5.4.7 Implementation Problems
The solution of N-level transcoding described above is not easy to be

implemented. Constructing a directed graph may be not too difficult, the service
broker could simply send request to the lookup service to return all available
transcoders. From this list, the service broker then should be able to construct a
directed graph for the transcoders. After this, the service broker should request
the lookup service periodically to check whether there is a new transcoder added
or a transcoder crashes.

The most difficult task is to give weights to each edge of the graph. The
system information of each transcoder is likely to change from time to time. If the
service broker is always sending request periodically to all transcoders to ask their
current status, the load of the network will increase significantly.

In N-level transcoding, we also have the same problems with 1-level
transcoding, that is some QoS parameters are very difficult to find, such as the
available bandwidth from one host to another host, for example from T1 to T2.

5.5 Summary
This chapter discusses two main issues, service brokering and service

chaining. Service brokering it the algorithm to find the most appropriate
transcoder for the client. Service chaining is the protocol to build path from the
server to the client via transcoder. At the end of this chapter, two configurations
of transcoders are discussed and one proposal for N-level transcoding are also
discussed.

��������(�

������
�����
�

This chapter discusses the implementation of the prototype of network
service infrastructure for transcoding multimedia streams. In general, it is divided
into two main parts. The first part is the platform in which the prototype is
implemented. The second part, which is the main part of this chapter, discusses
how the infrastructure is implemented.

6.1 Platform
There are three basic decisions that should be made in this implementation,

i.e. programming language, communication protocol and service discovery
protocol.

6.1.1 Programming Language
The first decision is in which language the prototype should be

implemented. There are two main alternatives that is suitable for my purpose,
Java and C++. Java is a platform-independent language and it is used in many
mobile devices, such as mobile phones. Java also provides a platform
independent multimedia library, called JMF (Java Media Framework). JMF itself
is not part of J2SE, but is available as an extension to J2SE. On the other hand,
C++ was an industry standard language a few years ago and it has a good
performance. Multimedia library in C++ is platform-independent, for example
Windows operating system provides MCI (Media Control Interface).

In this thesis, I use Java language because it is platform-independence and
it is used in the COMCAR project. Besides that, nowadays there is a growth of
computers and devices supporting Java. For example, at the time of writing this
thesis, more than 10 millions Java-enabled mobile phones have been released in
the market.

The implementation of this thesis is based on Java 2 Standard Edition
(J2SE) version 1.3.1. The implementation was tested in Sun Solaris machine with
Sun OS 5.8 and Intel machine with Windows XP operating system. However, it
should be portable to other operating systems, such as Linux as well. Since Java
is used, the multimedia library used here is JMF (Java Media Framework). The

Chapter 6: Implementation

58

detailed explanation of JMF can be found in Appendix A. The implementation of
this thesis is based on JMF version 2.1.1a.

6.1.2 Communication Protocol
The second decision is which communication protocol should be used.

There are several alternatives of communication protocol in Java, i.e. sockets,
RMI, IIOP (Internet Inter-ORB Protocol) and SOAP (Simple Object Access
Protocol). The implementation of this thesis is based on RMI.

Sockets model is not used in this thesis because as explained in Chapter 3,
the implementation would be cumbersome and error-prone. In fact, RTSP which
is used quite extensively in this thesis is based purely on sockets model.

IIOP [23], which is a part of CORBA, is a protocol from OMG (Object
Management Group) which allows computer applications to work together over
networks. IIOP allows program from any vendor on almost any computers,
operating systems, programming languages and networks can interoperate each
other.

CORBA and IIOP is not used in this thesis because it is very complex and
has too many overheads. In other words, this thesis does not need CORBA and
IIOP because the prototype implemented here is quite simple. Besides that, this
thesis is implemented in one language, Java.

SOAP [34] provides a light-weight protocol and it is used widely
nowadays. SOAP is an XML-based protocol for information exchange in a
decentralized and distributed environment. Unlike RMI and CORBA, SOAP is
based on asynchronous communication, it means SOAP messages are
fundamentally one-way transmission from a sender to a receiver.

SOAP is not used in this thesis for practical reasons only. The first reason
is because service brokering and service chaining should be done synchronously,
not asynchronously such as provided by SOAP. Although, SOAP messages can
be designed to allow synchronous communication, but it requires more works.
The second reason is convenience. As an example, if we use RMI, we can register
a transcoder using a simple command, registerService(formats) , where
formats has type of Format[] . The Format type itself is a class in JMF that
represents a format of media data. If we use SOAP, we have to design an XML
Schema of the Format type and then construct an XML Document.

6.1.3 Service Discovery Protocol
The third decision is which service discovery protocol should be used in

this thesis. There are two main alternatives here, i.e. Jini and UPnP (Universal
Plug and Play). Jini is based on Java language, which is appropriate for this
thesis, while UPnP is proposed by Microsoft and it has become an open standard
technology for connecting devices, PCs and services. Although now there is a
Java implementation of UPnP, this thesis is based on Jini.

In general, the basic concept of UPnP [22] is quite similar to Jini
technology. Unlike Jini, which is based on Java and RMI, UPnP is based on

Chapter 6: Implementation

59

HTTP and XML. The service announcement and service discovery are expressed
in XML and are communicated via HTTP. For example, a device or service sends
announcement message called ANNOUNCE when it is attached to the network.
Another differences between Jini and UPnP is the lookup service. Unlike Jini, in
UPnP, a lookup service, which is called a directory service, is optional. A
network can have a directory service or not.

This thesis uses Jini because it is based and written entirely in Java and
RMI. Besides that, this thesis uses RMI for communication protocol which is also
used in Jini.

6.1.4 Architecture
Figure 6-1 shows the architecture of the transcoder, client and service

broker from Java perspective. It is shown here that these components use JMF for
multimedia processing and RMI for communications and Jini for service
discovery.

The server is not discussed in detail because it only hosts multimedia files
or transmit media streams via HTTP server, RTP server or RTSP server.
Currently there are many HTTP servers available, such as Apache and Microsoft
IIS. There are also some RTSP servers, such as QuickTime Streaming Server
RealSystem Server.

Operating System

JMF

JVM

Jini

RMI

Transcoder Client Service Broker

Figure 6-1 Architecture of transcoder, client and service broker from Java
perspective.

6.2 Transcoder
A transcoder basically has two main functions. The first one, as a Jini

service, the transcoder must register its service to the lookup service and maintain
the registration, for example re-register it when the lease period has been expired.
The second one, a transcoder transcodes streams from the server to the client. It
means that it has to act as a client for the server and as a server for the client.

Chapter 6: Implementation

60

As a Jini service, a transcoder has an interface TranscoderInterface
and its implementation class TranscoderImpl . The main task of this class is
to receive request from the service broker.

A transcoder may serve several clients, it means that TranscoderImpl
class may create several different sessions. Each session serves one client, and the
client may control the transcoder, for example to play, pause, stop, rewind and fast
forward, using RMI. This session is implemented in
TranscoderPlayerInterface and its implementation class
TranscoderPlayerImpl .

The registration of transcoder to the service broker and its maintenance is
implemented in TranscoderDaemon class. Figure 6-2 shows the architecture
of a transcoder. It is shown here that one TranscoderDaemon may contains
several TranscoderImpl because one computer may contains several
transcoders. Each transcoder itself may serve several clients, thus it may contain
several TranscoderPlayerImpl .

`

TranscoderDaemon

TranscoderInterface
TranscoderImpl

TranscoderPlayerInterface
TranscoderPlayerImpl

Figure 6-2 Architecture of the transcoder.

6.2.1 TranscoderInterface and TranscoderImpl
As explained in the last section, TranscoderInterface and

TranscoderImpl receives request from the service broker to serve a client.
The simplest form of the interface is as follows:

public interface TranscoderInterface extends Remote {

 public TranscoderIdentifier addClient(

 String clientAddress,

 SourceMedia sourceMedia,

 AudioFormat audioFormat,

 VideoFormat videoFormat) throws RemoteException;

}

The interface contains one method, addClient , which receives four
parameters and returns TranscoderIdentifier . The clientAddress is
the address of the client that receives the stream, either IP address, such as

Chapter 6: Implementation

61

129.69.209.104, or computer name, such as tuba. The sourceMedia , which is
discussed later, contains information about the source media. The
audioFormat and videoFormat are the formats to which the transcoder
should transcode, in other words, these are the video format and/or audio format
received by the client.

6.2.1.1 TranscoderIdentifier

The TranscoderIdentifier stores an identifier of a transcoder
session. It is used by the client to receive the stream from the transcoder as well
as to control the transcoder via RMI. There are two basic information in this
class, the session address of the transcoder and the address of the RMI object.

public class TranscoderIdentifier implements Serializable {

 public SessionAddress sessionAddress;

 public String remoteObject;

}

The sessionAddress contains the host name, port number and Time to
Live (TTL) of the transcoder. The session address should be returned to the client
so that the client knows to which address and port it should listen to.

The remoteObject is the address of the RMI object of the transcoder.
The common syntax of remoteObject is rmi://hostname/transcoding/
TranscoderRemote/uniqueID. In order to guarantee that each transcoder session
has a unique address, this thesis uses combination of timestamp and random
number. The timestamp used here is the elapsed milliseconds since January 1,
1970 00:00:00 GMT. The random number has a range of 10000 – 50000. An
example of the address of an RMI object is shown as follows:

rmi://horn/transcoding/TranscoderRemote/1015767147778-15091

The probability that two sessions have the same addresses is almost zero
because it is not likely that two clients request at the same time (in one
millisecond range) and the random number generator at that time produces the
same value.

6.2.1.2 SourceMedia

The SourceMedia contains information about the source media, such as
its address and its format. In general, there are three types of source media which
is supported by SourceMedia , i.e.:

• URL, including HTTP, FTP and RTSP. For example,
http://tuba/media/starwars.mov.

• RTP session, indicated by a source address and port number. For example,
a multicast stream might have an IP address 224.0.0.1 and port number
22222.

Chapter 6: Implementation

62

• Familiar name, which can be resolved to a URL or RTP session. For
example “Star Wars” may be resolved to http://tuba/media/starwars.mov.
In this thesis, the real URL or RTP session can be resolved from a lookup-
table, which is given by the administrator of the service broker.

Since SourceMedia supports three different types of source media, this
class has three constructor for each type.

public class SourceMedia implements Serializable {

 public SourceMedia(URL url);

 public SourceMedia(String sourceAddress, int sourcePort);

 public SourceMedia(String source);

}

The SourceMedia also stores the format of the media, both audio and
video format. This format is needed in the service brokering process to find the
transcoding format (see section 5.1.1).

6.2.2 TranscoderPlayerInterface and TranscoderPlayerImpl
A TranscoderPlayerInterface and TranscoderPlayerImpl

maintains a transcoder session, it means one instance of
TranscoderPlayerImpl serves one client. For simplicity reason, this thesis
assume that source media contains maximum two tracks, one for audio and the
other one for video. In other words, the implementation of this thesis can only
handle media that contains audio only, video only or audio and video.

Figure 6-3 shows stream flow from the server to the client via
TranscoderPlayerImpl . There are two possible servers in this case, one
possibility is HTTP, FTP and RTSP server, and another possibility is RTP server.
For HTTP, FTP and RTSP server, the media can be read by a single
DataSource . Each track of the DataSource is read by a Processor to be
transcoded into different formats. As explained before, this thesis assume that a
media contains maximum of two tracks, so there are two Processor s, i.e.
Processor 1a and Processor 1b , one for transcoding audio stream and
the other one for transcoding video stream.

RTP server needs different handling, because it should be received by an
RTPManager. Since audio and video track of a media might be sent using two
different ports, there are two RTPManagers. The DataSource s of both
RTPManager, i.e. DataSource 0a and DataSource 0b , then are read by
Processor 1a and Processor 1b to be transcoded to other formats.

The task of Processor 2a and Processor 2b is to send the output of
Processor 1a and Processor 1b to the client. It can be done by using one
RTPManager for each track.

Chapter 6: Implementation

63

TranscoderPlayerImpl

DataSource 0

Processor 1a

DataSource 1a

Processor 1b

DataSource 1b

Processor 2a Processor 2b

DataSource 2a DataSource 2b

RTP Manager 1a RTP Manager 1b

Client

HTTP, FTP or RTSP server

DataSource 0a

RTP Session

RTP Manager 0a

DataSource 0b

RTP Manager 0b

Figure 6-3 Stream flow in the transcoder player.

TranscoderPlayerImpl should provide some methods for the client
to control the media. The basic interface for TranscoderPlayerImpl can be
as simple as follows:

public interface TranscoderPlayerInterface extends Remote {

 public void play() throws RemoteException;

 public void stop() throws RemoteException;

 public void pause() throws RemoteException;

 public void rewind() throws RemoteException;

 public void ff() throws RemoteException;

}

The client can remotely call one of the methods above by using RMI. The
address of RMI object of the TranscoderPlayerImpl is stored in
TranscoderIdentifier.remoteObject which is returned by
TranscoderInterface.addClient method. The code below shows how
to call stop method to stop media stream using RMI.

Chapter 6: Implementation

64

try {

 TranscoderPlayerInterface transcoder = (TranscoderPlayerInterface)

 Naming.lookup(remoteObject);

 transcoder.stop();

} catch (Exception ex) {

 System.err.println(ex);

}

6.2.3 TranscoderDaemon
The instance of TranscoderDaemon in one computer can only be one.

The main task of TranscoderDaemon is to register service of the transcoders
to the lookup service. A TranscoderDaemon in a computer may also maintain
several instance of TranscoderImpl s because one computer may have
several transcoders in it. The code below shows the registration of an instance of
transcoder to the lookup service.

TranscoderImpl transcoder = new TranscoderImpl(

 transcoderName, // name of the transcoder

 sourceFormats, // supported source formats

 destFormats); // supported destination formats

JoinManager joinManager = new JoinManager(

 transcoder, // new instance of the transcoder

 attributes, // attributes of the transcoder

 transcoder, // listener to the service ID

 lookupManager, // the lookup discovery manager

 new LeaseRenewalManager());

The registration of a transcoder needs some attributes that is used by the
lookup service to find a service. The attributes might be name, location,
manufacturer, supported formats, etc. Figure 6-4 shows an example of attributes
of a transcoder. The transcoder which has a name of “tuba.informatik.uni-
stuttgart.de-1” is located on Britwiesenstrasse 20-22 on the first floor and in room
0.113. There are also some attributes about the service, manufacturer, serial
number, vendor and version. The transcoder supports two source formats and
three destination formats.

Chapter 6: Implementation

65

TranscoderImpl

Name.name = "tuba.informatik.uni-stuttgart.de-1"

Location.building = "Brietwiesenstrasse 20-22"
Location.floor = "1"
Location.room = "0.113".

SourceFormatEntry.sourceFormat =
 new AudioFormat(AudioFormat.MPEG_RTP, 44100, 16, 2));

SourceFormatEntry.sourceFormat =
 new AudioFormat(AudioFormat.MPEG_RTP, 44100, 16, 1));

DestFormatEntry.destFormat =
 new AudioFormat(AudioFormat.DVI_RTP, 22050, 4, 1));

DestFormatEntry.destFormat =
 new AudioFormat(AudioFormat.DVI_RTP, 11025, 4, 1));

DestFormatEntry.destFormat =
 new AudioFormat(AudioFormat.DVI_RTP, 8000, 4, 1));

ServiceInfo.manufacturer = "COMCAR Project"
ServiceInfo.serialNumber = "123-456-789"
ServiceInfo.vendor = "University of Stuttgart"
ServiceInfo.version = "1.0"

Figure 6-4 Attributes of a transcoder.

In general, the transcoder may have as many attributes as it can, but the
mandatory attributes are SourceFormatEntry and DestFormatEntry .
Both classes are derived from AbstractEntry interface because it is required
by Jini.

public class SourceFormatEntry extends AbstractEntry {

 public Format sourceFormat;

}

public class DestFormatEntry extends AbstractEntry {

 public Format destFormat;

}

In the design of this attributes, I assume that all formats of
SourceFormatEntry must be able to be transcoded to the formats of
DestFormatEntry . For example, transcoder in Figure 6-4 is able to transcode
MP3, 44 kHz, 16 bit, stereo to three formats, DVI, 22 kHz, 4 bit, mono; DVI, 11
kHz, 4 bit, mono; and DVI 8 kHz, 4 bit, mono. It is able to transcode MP3 44
kHz, 16 bit, mono to three formats as well, DVI, 22 kHz, 4 bit, mono; DVI, 11
kHz, 4 bit, mono; and DVI 8 kHz, 4 bit, mono.

In some cases, a transcoder might support several source formats but not
all of them can be transcoded to all destination formats. Figure 6-5 shows one
example of this scenario. In this case, MP3, 44 kHz, 16 bit, stereo cannot be
transcoded to GSM Mono and DVI, 22 kHz, 4 bit, mono cannot be transcoded to
MP3, 22 kHz, 16 bit, stereo.

Chapter 6: Implementation

66

MP3, 44 kHz,
16 bits, stereo

DVI, 22 kHz,
4 bits, mono

MP3, 22 kHz,
16 bits, stereo

DVI, 8 kHz,
4 bits, mono

GSM-Mono

Figure 6-5 Not all source formats can be transcoded to the destination formats.

The solution to the case above is simply by creating two instances of
TranscoderImpl . It is allowed in this design because one
TranscoderDaemon may maintain more than one instance of
TranscoderImpl . Each instance of TranscoderImpl supports one source
format.

6.3 Service Broker
Basically there are two main functions of a service broker. The first one is

very similar to the first functions of the transcoder, to register and maintain its
service to the lookup service. The second one is to find the appropriate transcoder
for the client and to build path from the server to the client.

6.3.1 ServiceBrokerDaemon
Like the transcoder, the service broker also has a daemon, called

ServiceBrokerDaemon . On one computer, there should be only one instance
of ServiceBrokerDaemon . The main task of this class it to register the
service to the lookup service. Unlike the transcoder, an instance of
ServiceBrokerDaemon can only have one instance of
ServiceBrokerImpl (see Figure 6-6). The code below shows the registration
of the service broker to the lookup service.

serviceBroker = new ServiceBrokerImpl(lookupManager);

JoinManager joinManager = new JoinManager(

 serviceBroker, // new instance of the service broker

 null, // no attributes for this service broker

 serviceBroker, // listener to the service broker

 lookupManager, // the lookup discovery manager

 new LeaseRenewalManager());

Chapter 6: Implementation

67

ServiceBrokerDaemon

ServiceBrokerInterface
ServiceBrokerImpl

Figure 6-6 Architecture of the service broker.

6.3.2 ServiceBrokerInterface and ServiceBrokerImpl
The main task of the ServiceBrokerInterface and

ServiceBrokerImpl is to receive a request from the client and then find the
appropriate transcoder. The simplest interface for this purpose is shown as
follows:

public interface ServiceBrokerInterface extends Remote {

 public TranscoderIdentifier findTranscoder(

 String clientAddress,

 SourceMedia sourceMedia,

 ClientPreferences clientPreferences,

 SystemInfo systemInfo) throws RemoteException;

}

The interface contains only one method, called findTranscoder ,
which receives four parameters and returns TranscoderIdentifier . The
clientAddress is the address of the client who request the stream. The
sourceMedia is the address of the media stream requested by the client. The
clientPreferences and systemInfo are explained below.

6.3.3 ClientPreferences
The ClientPreferences class implemented in this thesis contains all

formats which are supported by the client. However, in the next future, it might
contain other attributes, such as location, so that the client can ask “Give me
transcoder in building A”. The code below shows the declaration of
ClientPreferences class.

public class ClientPreferences implements Serializable {

 String[] supportedFormat;

}

6.3.4 SystemInfo
The SystemInfo class contains current system information which reflects

QoS parameters of the client, such as processor load, available bandwidth, etc. It
is used by the service broker to determine whether the client is able to receive a
certain format or not. For example, a client with low processor speed and high

Chapter 6: Implementation

68

processor load might not be able to receive MPEG streams. The code below
shows the declaration of SystemInfo class.

public class SystemInfo implements Serializable {

 int processorSpeed = 0; // in MHz

 int processorLoad = 0; // in %

 int totalMemory = 0; // in MB

 int availableMemory = 0; // in MB

 int screenWidth = 0; // in pixels

 int screenHeight = 0; // in pixels

 int colorDepth = 0; // in bits

 int numberOfSpeaker = 0; // mono/stereo/surround

 int estimatedBandwidth = 0; // in bps

 int availableBandwidth = 0; // in bps

}

In this thesis, most QoS parameters in ClientPreferences do not
reflect “real” situation because they are given through a user interface. In reality,
QoS parameter should be given real values by using some measurements.
Actually one task in the COMCAR project deals with how to get QoS parameters.

6.4 Client
The most important class in the client side is ClientImpl . This class

has two main functions, firstly to find the transcoder via service broker, and
secondly to create a player in a window and then to play the stream.

When a client enters a URL to play the stream from the given URL, a
findTranscoder method is executed.

public boolean findTranscoder(SourceMedia sourceMedia,

 ClientPreferences clientPreferences,

 SystemInfo systemInfo,

 Container container,

 long startTime) {

The first three parameters is similar to the first three parameters of
ServiceBrokerInterface.findTranscoder method. The
container parameter is the AWT container in which the video and control
buttons should be displayed. The startTime is the time, in milliseconds, when
the media should be played. For example, if the client wants to play the media
from the beginning, this parameter is simply given value 0. This parameter is
important in transcoder handover because the new transcoder will usually not play
the stream from the beginning. This parameter only affects in retrieval
applications, not in conversational and distributed applications.

 The task of findTranscoder method is to find the service broker and
then ask the service broker to find a transcoder. After that, this method creates a

Chapter 6: Implementation

69

new session to receive the stream. The stream flows from the transcoder to the
client is shown in Figure 6-7.

ClientImpl

DataSource

Player

TranscoderPlayerImpl

DataSource 1a

RTP Manager 1a

DataSource 1b

RTP Manager 1b

Figure 6-7 Stream flow in the client.

 As in the transcoder, there are two RTPManagers in the client, one for
audio stream and the other one for video stream. These two clients should be
merged into one single DataSource so that the stream can be played without
any synchronization problems. According to Sun Microsystems [27], JMF uses
the audio stream to synchronize with the video stream in a merged data source.

6.5 Establishing Connection
This section summarizes the discussion of the implementation part, it

shows briefly how the connection between the client and the server is established.
Figure 6-8 is the modified version of Figure 5-8, it shows the protocols to
establish a connection from Java perspective. This figure has been simplified
because in reality, there is a Web server which hosts the stub files of the
transcoder and the service broker. The client may download the stub files of the
service broker and the server broker may download the stub files of the transcoder
via this Web server.

Chapter 6: Implementation

70

Server

ClientImpl
1

2

Lookup Service
(reggie.jar)

TranscoderInterface

ServiceBrokerInterface

ServiceBrokerDaemon

ServiceBrokerInterface

ServiceBrokerImpl

8

TranscoderDaemon

TranscoderInterface

TranscoderImpl

TranscoderPlayerInterface

TranscoderPlayerImpl

5

6

9

7

10

12

3

4

13

11

1. ServiceDiscoveryManager.lookup()

2. ServiceBrokerInterface

3. ServiceBrokerInterface.findTranscoder()

4. ServiceDiscoveryManager.lookup()

5. TransoderInterface

6. TranscoderInterface.addClient()

7. TranscoderIdentifier

8. TranscoderIdentifier

9. Request stream

10. Stream

11. Stream

12. TranscoderPlayerInterface.play()

13. Control

Figure 6-8 Protocols to establish a connection from Java perspective.

6.6 Summary
This chapter discusses the implementation of the prototype of network

service infrastructure for transcoding multimedia streams. It starts with the
selection of programming languages, communication protocols and service
discovery protocols from some available alternatives. The rest of this chapter
discusses the technical parts of the implementation.

��������) �

�
��������
��
�������
��

This chapter explains the integration of all components implemented in
Chapter 6. The integration includes the installation of each component into
several computers. The next step it to test the infrastructure with different source
media.

7.1 Integration
In the integration of the transcoding infrastructure, I used several

computers in the Computer Science department, University of Stuttgart.

7.1.1 Hardware
The hardware used here were three machines of Sun Ultra Sparc II 450

MHz, 512 MB RAM with Sun OS 5.8 operating system and one notebook of Intel
Pentium III 600 MHz, 128 MB with Windows XP operating systems.

7.1.2 Software
The list below shows the software used to integrate and test the

implementation of this thesis:

• J2SE (Java 2 Standard Edition) version 1.3.1.

• JMF (Java Media Framework) version 2.1.1a.

• Jini Technology Starter Kit version 1.2.

• Apache Web server 1.3.

The first three software should be installed on all machines, while the last
software was only installed one machine which acts as a Web server.

7.1.3 Service
There are two main services I used here, i.e. retrieval and distribution

services. The retrieval services are on-demand audio and video streams from a
Web server. The distribution services were audio and video broadcast which was
sent to a multicast addresses. The audio used here had format of MP3 44 kHz, 16

Chapter 7: Integration and Testing

72

bit, stereo; while the video had format of MPEG, 352 x 240, 30 fps and MP3 44
kHz, 16 bit, stereo.

7.1.4 Installation
As explained in the last chapter, there were five main components of the

transcoding infrastructure, i.e. server, transcoder, client, lookup service and
service broker. Beside those components, we need a Web server to store the stub
files and the media files. We also need RMI daemon and RMI registry to support
Jini and Java RMI. The last components I added in the infrastructure is radio
broadcast and TV broadcast that delivers audio and video streams to the network.
Figure 7-1 shows the installation of these components into the “real” computers.

horn
129.69.210.93
Lookup service
Service broker
Transcoder 2
Transcoder 3
RMI daemon
RMI registry

tuba
129.69.209.104
Web server
Client 1
Client 2

mylaptop
129.69.190.1
Client 3

posaune
129.69.210.92
TV broadcast
Radio broadcast
Transcoder 1

gwipvrgwlaptop

129.69.209.0129.69.210.0

129.69.190.0

gw212

Figure 7-1 Installing the components of the transcoding service into computers.

7.1.4.1 Web Server

The Web server was installed on the tuba machine on port 8080, so the
complete URL of the Web server is http://tuba.informatik.uni-stuttgart.de:8080/ or
http://129.69.209.104:8080/. For example to request Star Wars movie from the
Web server, one could use the URL of http://tuba.informatik.uni-
stuttgart.de:8080/media/starwars.mov.

Chapter 7: Integration and Testing

73

7.1.4.2 Radio and TV Broadcast

The radio broadcast and TV broadcast were sent from posaune machine to
the multicast addresses. They were transmitted using JMStudio application,
which is provided by JMF. The radio broadcast was sent to the multicast address
of 239.0.0.5/22010, while the TV broadcast was send to the multicast address of
239.0.0.6/22020.

7.1.4.3 RMI Daemon and RMI Registry

RMI daemon and RMI registry are needed for the Jini and Java RMI
respectively. Both of them are provided by JDK in two files, rmid and
rmiregistry. The simplest way to run RMI daemon and RMI registry is by typing
the following command.

unsetenv CLASSPATH

rmid -J-Dsun.rmi.activation.execPolicy=none &

rmiregistry &

7.1.4.4 Lookup service

The lookup service used in this thesis is the lookup service from Sun
Microsystems. The file for lookup service is provided in Jini called
reggie.jar . The following command is an example of how to run the lookup
service.

java –jar

 -Djava.security.policy=file:/scratch/jini1_2/policy/policy.all

 /scratch/jini1_2/lib/reggie.jar

 http://tuba.informatik.uni-stuttgart.de:8080/jini/reggie-dl.jar

 /scratch/jini1_2/policy/policy.all

 /home/pranatay/tmp/reggie_log public

7.1.4.5 Service broker

The main class of the service broker is called ServiceBroker . The
service broker can be run in GUI mode or in text mode only. By default, the
service broker is run in GUI mode. It can be run in text mode by adding -nogui
parameters, such as the example below.

java -classpath ".:/scratch/JMF2.1.1/lib/jmf.jar:

 /scratch/jini1_2/lib/jini-core.jar:

 /scratch/jini1_2/lib/jini-ext.jar:

 /home/pranatay/Transcoding/classes/"

 -Djava.security.policy=file:/scratch/jini1_2/policy/policy.all

 -Djava.rmi.server.codebase=http://129.69.209.104:8080/classes/

 com.antonypranata.transcoding.ServiceBroker –nogui

Chapter 7: Integration and Testing

74

7.1.4.6 Transcoder

There are three transcoders in this infrastructure, each of them serves
different formats. Table 7-1 shows the list of all transcoders with their supported
formats.

Table 7-1 List of transcoders in the integration part.

Transcoder Supported Source Format Supported Destination
Format

Transcoder 1 MPEG/Audio (all sampling
rates)

MPEG/Audio (all sampling
rates)

 MPEG/Video (all sizes) H.263 (all sizes)

Transcoder 2 MPEG/Audio (all sampling
rates)

DVI (all sampling rates)

 MPEG/Video (all sizes) MPEG/Video (all sizes)

Transcoder 3 MPEG/Audio (all sampling
rates)

µ-Law

 MPEG/Audio GSM Mono

The main class of the transcoder is Transcoder . Like the service
broker, the transcoder can be run in GUI mode or text mode only. The following
command run the transcoder in GUI mode.

java -classpath ".:/scratch/JMF2.1.1/lib/jmf.jar:

 /scratch/jini1_2/lib/jini-core.jar:

 /scratch/jini1_2/lib/jini-ext.jar:

 /home/pranatay/Transcoding/classes/"

 -Djava.security.policy=file:/scratch/jini1_2/policy/policy.all

 -Djava.rmi.server.codebase=http://129.69.209.104:8080/classes/

 com.antonypranata.transcoding.Transcoder

7.1.4.7 Client

There are three clients used in this integration part, each of them has
different QoS parameters, i.e:

• Client 1, supports MPEG/Video (all sizes), H.263 (all sizes), and
MPEG/Audio (all sampling rates); the available bandwidth was given 1
Mbps.

• Client 2, supports H.263 (all sizes), DVI (all sizes), and GSM Mono; the
available bandwidth was given 256 kbps.

• Client 3, supports MPEG/Video (all sizes) and DVI (all sampling rates);
the available bandwidth was given 128 kbps.

Chapter 7: Integration and Testing

75

7.2 Testing
In this step, we had already had media files stored in a Web server in the

tuba machine as well as TV and radio broadcast from the posaune machine. The
situation can be illustrated in Figure 7-2.

Web server

Audio file (MP3,
44kHz, 16 bit,
stereo)

Video file (MPEG
352 x 288 fps +
MP3, 44kHz, 16
bit, stereo)

Radio broadcast

MP3, 44kHz, 16 bit, stereo

TV broadcast

MPEG 352 x 288 fps +
MP3, 44kHz, 16 bit, stereo

Transcoder 1

MPEG/Audio - MPEG/Audio
MPEG/Video - H.263

Transcoder 2

MPEG/Audio - DVI
MPEG/Video - MPEG/Video

Transcoder 3

MPEG/Audio - µLaw
MPEG/Audio - GSM Mono

Client 1

MPEG/Video
H.263
MPEG/Audio
1 Mbps

Client 2

H.263
DVI
GSM Mono
256 kbps

Client 1

MPEG/Video
DVI
128 kbps

Figure 7-2 The configuration of testing purpose.

In the first test, client 1 requested media stream from the address
http://tuba:8080/media/richard.mp3. The service broker, after performing service
brokering algorithm, selected transcoder 1 and the format MP3, 44 kHz, 16 bit,
stereo. The service broker selected MP3, 44 kHz, 16 bit, stereo because this
format has the highest priority according to the priority table (see Table 5-1).
Besides that, transcoder 1 did not serve any clients yet at that time so it has
enough resources to serve the client.

 The required time to setup the connection was 6 seconds. It took quite
long because this was the first request so it means either the client and the service
broker did not have any information about the lookup service yet.

When the available bandwidth of client 1 was decreased to 100 kbps, the
service broker still selected transcoder 1 but with the format MP3, 44 kHz, 16 bit
mono.

The required time to setup the connection was around 1 second. In this
request, it seems that the client had already had the cache of the service broker so
that it did not need to resend request to the lookup service. The same thing
happens in the service broker, it had already had the cache of the transcoder so
that it did not need to resend request to the lookup service. That is why the setup
connection was about 1 second only.

Chapter 7: Integration and Testing

76

When the available bandwidth of client 1 was decreased again to 50 kbps,
the service broker still selected transcoder 1 but with the format MP3, 22 kHz, 16
bit, mono. The required time to setup the connection was around 1 second.

In the second test, client 2 requested stream from TV broadcast from the
address 239.0.0.6/22020. The service broker then selected transcoder 2 with the
format H.263 176 x 144 pixels for video stream and DVI 11 kbps, 4 bit, mono for
audio stream. This format was selected because it has the highest priority when it
is compared to the client’s preferences (see also priority table in Table 5-3).

The time to setup the connection was 2 seconds. The time required to
setup this connection was less then the first test because the service broker had
already had the cache of transcoders in the network so that it did not need to
resend request to the lookup service.

When the available bandwidth of client 2 was decreased to 100 kbps, the
service broker selected transcoder 2 with the format H.263 128 x 96 pixels for
video stream and DVI 8 kbps, 4 bit, mono for audio stream. The time to setup the
connection was 1 second.

Next the available bandwidth of client 2 was decreased to 30 kbps, the
service broker reported that it could not find the transcoder. This is because no
video stream can be delivered in 30 kbps bandwidth (see Table 5-3).

With unchanged bandwidth, client 2 then requested stream from radio
broadcast. The service broker selected transcoder 3 with the format GSM Mono.

In the last test, client 3 request video stream from the address
http://tuba:8080/media/starwars.mp3. The service broker selected transcoder 2
and the format MPEG 128 x 96 pixels for video stream and DVI 8 kHz, 4 bit,
mono for audio stream.

7.3 Summary
This chapter discusses the integration of the implementation program in

Chapter 6. The integration uses computers in the lab of Computer Science
department, University of Stuttgart. This chapter also describes some tests
performed on the infrastructure integrated in the integration part.

��������* ����

+������,��	��

This chapter discusses some related works as well as the contribution of
this thesis to the community of distributed multimedia systems.

8.1 Proxy-based Transcoding
Fox, et. al. [8] has proposed a proxy-based transcoding infrastructure using

a principal which they call datatype-specific lossy compression or on-demand
distillation. The purpose is to increase Quality of Service for the client and to
reduce end-to-end latency perceived by the client. The distillation or refinement
uses an intelligent decision to throw away information based on the semantic type
of the data. For example, distillation of video might include reduction of color
information, high-frequency components, pixel resolution, and/or frame rate.

The infrastructure proposed by Fox, et. al. is able to adapt web pages and
their contents, including images and video streams. They developed a distiller,
which contains image distiller, rich-text distiller, and video distiller, on a proxy
server. The proxy itself might be put in the Internet Service Provider connection
point or wireless basestation.

8.1.1 Architecture
The architecture of proxy-based transcoding infrastructure proposed by

Fox, et. al. is shown in Figure 8-1.

Figure 8-1 Basic architecture of proxy-based transcoding (courtesy of A. Fox,
et.al., 1996).

Chapter 8: Related Works

78

The components of the infrastructure are proxy, one or more datatype-
specific distiller, an optional network connection monitor, and the application
support library.

8.1.1.1 Proxy Control Point

A client communicates exclusively with the proxy, a controller process
located logically between the client and the server. The task of the proxy is to
retrieve content from the server on behalf of the client and then determine which
distillation engine must be employed. When the proxy calls a distiller, it passes
information such as the hardware characteristics of the client, acceptable
encoding, and available network bandwidth.

8.1.1.2 Datatype-Specific Distillers

The distillers are processes that are controlled by proxies and perform
distillation on behalf of one ore more clients. The distiller perform distillation to
the data, either text, images or videos, along three important dimensions, i.e.:

• Network variations, include bandwidth, latency and error behavior of the
network.

• Hardware variations, include screen size and resolution, gray or grayscale
bit depth, memory and CPU power.

• Software variations, include the application-level encoding that a client
can handle, for example MPEG or H.263.

8.1.1.3 Network Connection Monitor

A Network Connection Monitor (NCM) which monitors end-to-end
bandwidth and connectivity to the proxy's client. NCM uses three methods of
determining the characteristics of the client's network connection, i.e.:

• User advice. The user notifies the proxy via a user interface his expected
bandwidth.

• Network profile. NCM uses the average characteristics of the network.

• Automatic. NCM creates a process to track the values of effective
bandwidth, roundtrip latency, and probability of packet error.

8.1.1.4 Client-side Architecture

The architecture supports both modified and unmodified client
applications. The modified applications make use of application support library
that provides an API with suitable abstractions for manipulating data and
interacting with the proxy. Unmodified legacy applications can take advantages
of the architecture with the help of a client-side agent. The client-side agent is a
process that runs locally on the client device.

8.1.2 Contribution of This Thesis
A proxy-based transcoding is good enough to solve heterogeneity

problem. However it has two main disadvantages, i.e.:

Chapter 8: Related Works

79

• Scalability. The client of proxy-based transcoding depends on one proxy
to transcode the stream. If the number of users is growing, the proxy
might become overloaded. A. Fox et. al. also mentioned this problem and
they have simulated an image-distiller on a single 80-MHz HP PA-RISC
workstation. The reasonable number of users for this simulation is around
20 users. If the number of users is more than 24, the system is even
unusable.

• Single Point of Failure. The proxy-based transcoding has a single point of
failure because if the proxy crashes, all clients are not be able to receive
anything.

The architecture of this thesis eliminates two main disadvantages of the
proxy-based transcoding. Firstly, it solves scalability problem by introducing
several transcoders on the network. Secondly, it eliminates single-point-of-failure
because each component might be duplicated, including the lookup service and
the service broker.

8.2 KISS Project
K. Jonas, et. al. on the KISS project [18] [19] proposed communication

structure for streaming services in a heterogeneous network that allows
transparent integration of network service applications. Network services may be
concatenated so that the content streams may experience several transitions on
their way through the network, in order to achieve a requested QoS.

K. Jonas, et. al. designed a network with several Service Applications (SA)
and Network Access Points (NAP). Figure 8-2 shows the architecture of network
infrastructure in KISS project.

Figure 8-2 Architecture of network infrastructure of KISS project (courtesy of K.
Jonas, et. al., 1998).

The mediator between end-system applications and the service network is
the NAP. The SA connects to the NAP and offer its service. Client applications
connect to the NAP and request services. The NAP handles services
announcement and delivery. If the service requirement does not match the

Chapter 8: Related Works

80

announced service, the NAP tries to find a service application in the network
which adapts the offer to the requirement.

The server and the client only know NAP, they do not know SA at all.
The server announce its service via NAP and the client request for a service via
NAP. Each time a client requests for a stream, it sends the request to the NAP and
then NAP finds for an appropriate SA using multicast messages. For example a
server provides a service (a live audio stream) with a data rate of 128 kbps. The
server announces its service via NAP N1. The announcement itself might look
like "CNN Live 4 Mbps, MPEG-2". A client connected to NAP N2 requests a
service with a maximum data rate of 64 kbps because of its limited bandwidth.
The request itself might look like "CNN Live 64 kbps H.263". The NAP N2 now
sends a multicast message into the network asking for the transcoder which is able
to transcoder 4 Mbps to 64 kbps stream.

The advantage of the KISS infrastructure is that none of the user
applications are involved in any of the networking/multicasting/transcoding
issues. This approach allows simple end-system applications to obtain added
service transparently from SAs installed somewhere in the network and without
knowledge of SA existence. Another advantage is that is provides a method for
increasing the variety of network services on demand. New services can be
installed and used without any end-system modification.

8.2.1 Contribution of This Thesis
The infrastructure proposed in this thesis is quite similar to the KISS

project from K. Jonas, et. al. The SA in the KISS project is equivalent to the
transcoder in my thesis. The NAP in the KISS project is very similar to the
service broker in my thesis. However, there are some differences between both
architectures, i.e.:

• The KISS project uses multicast messages to find SA dynamically, while
my thesis uses a directory service of transcoder, called lookup service.
The approach of this thesis eliminates multicast messages but requires the
transcoder to register with the lookup service.

• This thesis uses a priority-based service brokering, it means the service
broker has a list of possible destination formats and searches the
transcoder starting from the highest priority to the lowest one. The
KISS project uses only one destination format and increases the TTL of
the multicast messages when NAP cannot find the appropriate SA.

8.3 ICEBERG Project
The main goal of the ICEBERG project [21] [33] is to develop an Internet-

based integration of telephony and data services spanning diverse access
networks. The ICEBERG project defines service portability, that is the ability to
access services using any devices, anywhere, continuously with mobility support
and dynamic adaptation to resource variations. A middleware service

Chapter 8: Related Works

81

infrastructure, called APC (Automatic Path Creation), allows services to be
accessed transparently from any device and any network.

Figure 8-3 shows one scenario of the use of the APC.

Figure 8-3 One scenario of APC in the ICEBERG project (courtesy of Mao and

Ratz, 2000).

In this scenario, a user is retrieving map information using a GSM phone.
The APC establishes the path by converting HTML format from the map service
to the GSM format by going through content extraction, speech synthesizer and
GSM encoding operators. APC is completely transparent to the user because it
only interacts with the Network Service Provider.

The path construction consists of four steps, i.e.:

• Logical Path Creation. A logical path consists of an ordered sequence of
operators joined by connectors. The logical path is determined using
shortest path search.

• Physical Path Creation. A physical path is a logical path, along with a
choice of actual nodes (physical machines) on which to run the operators.

• Path Instantiation, Execution, Maintenance and Querying. This steps set
up the path so that the data flow can be started.

• Path Tear-Down. When a path is no longer needed, the user informs APC
to stops the data flow, removes connectors, and frees other relevant
resources.

The ICEBERG is a very good and ambitious project and the transcoding
infrastructure, which they call APC, is only a small part of the overall goal of the
project. Actually, the architecture proposed in this thesis uses some principles of
the ICEBERG project. For example, the logical path construction of the APC is
quite similar to the service brokering algorithm, while physical path creation is
quite similar to the service chaining protocol.

8.3.1 Contribution of This Thesis
Since the ICEBERG project concentrates on building any-to-any

communication, they do not pay attention to the Quality of Service issue. This

Chapter 8: Related Works

82

result of this thesis, although is not good as the ICEBERG project, but at least it
gives a contribution in the QoS issue.

8.4 Summary
This chapter gives an overview and comparison of some related works.

There are three related works discussed in this chapter, i.e. proxy-based
transcoding, KISS project and ICEBERG project. At the end of each discussion,
the contribution of this thesis is also discussed.

��������- �

 �����!��
���������,��	��

9.1 Summary
The growth of Internet mobile devices leads to two basic problems in

distributed multimedia systems. The first problem is heterogeneity of client
devices which have different capabilities along many axes, including network
connections. The client may be connected to the Internet via Wireless LAN, such
as WaveLAN, or Wireless WAN, such as third generation mobile networks. The
second problem is mobility which allows a mobile client to move from one
network to another network which might have different bandwidth.

This thesis solve heterogeneity and mobility problems by transcoding
media streams to the appropriate format for the client via transcoder. The goal of
this thesis is to implement a prototype of network service infrastructure for
transcoding multimedia streams. The prototype also includes service brokering,
that is the protocol to find the appropriate transcoder, as well as service chaining,
that is the algorithm to build service chain from the server to the client via
transcoder. The prototype is developed in Java platform using RMI, Jini and JMF
technology.

The prototype has been tested in the lab of Computer Science department,
University of Stuttgart. It run well without any problems. However, this
prototype still needs some other tests in real-world situation.

9.2 Future Works
The prototype implemented in this thesis still needs many improvement,

i.e.

• Most of QoS parameters in this prototype is constant values, they do not
represent the actual condition of the system and network. In the future,
some measurements of QoS parameters, such as bandwidth, latency and
jitter, should be integrated in the prototype.

• This thesis only support 1-level transcoding, it means there is only one
transcoder between server and client. It would be better if the

Chapter 8: Related Works

84

infrastructure support N-level transcoding as well so that we can build
more sophisticated infrastructure.

• The prototype only supports Campus LAN with limited number of users.
There are many things should be considered so that this prototype can be
implemented in the Internet. The most important is scalability.

����
��.���

#�$����������������	�

This appendix discusses briefly JMF (Java Media Framework), a
multimedia library for Java from Sun Microsystems, Inc. For more detailed about
JMF, see the Java Media Framework Programmer’s Guide [27].

JMF provides a unified architecture and messaging protocol for managing
the acquisition, processing and delivery of time-dependent media data (JMF).
JMF is designed to support many well-known formats of media, such as MPEG,
H.263, DVI, GSM, and many more. This thesis uses JMF to send and receive
media stream to and from each components in the transcoding infrastructure.
Figure A-1 shows the high-level architecture of JMF.

Figure A-1 High-level architecture of JMF (courtesy of Sun Microsystems, Inc.,

1999).

JMF uses the basic model very similar to devices such as tape decks or
VCRs. When we play a movie using VCS, we provide the media stream to the
VCR by inserting a video tape. A data source in JMF acts like the video tape, it
encapsulates the media stream. Playing and capturing audio and video with JMF
requires the appropriate input and output devices, such as microphones, cameras,
speakers and monitors.

The basic class needed in JMF is Player class, which processes an input
stream of media data and renders it at a precise time. Figure A-2 shows the JMF

Appendix A: Java Media Framework

86

Player model. A DataSource class here is used to deliver the input stream to
the Player .

Figure A-2 JMF Player model (courtesy of Sun Microsystems, Inc., 1999).

Another basic class is Processor , which is a specialized type of
Player that provides control over what processing is performed on the input
stream. In addition, a Processor can output media data through a
DataSource so that it can be presented by another Player or Processor ,
further manipulated by another Processor , or delivered to some other
destination, such as a file. Figure A-3 shows the JMF Processor model.

Figure A-3 JMF Processor model (courtesy of Sun Microsystems, Inc., 1999)

Figure A-4 shows the stages of Processor . As shown in this picture,
the processing of media data is split into several stages:

• Demultiplexing is the process of parsing the input stream, and it is
extracted if the input stream contains multiple tracks.

• Pre-processing is the process of applying effect algorithms to the extracted
tracks.

• Transcoding is the process of converting each track from one format to
another. It is actually the main topic of this thesis.

• Post-processing is the process of applying effect algoritms to decoded
tracks.

• Multiplexing is the process of interleaving the transcoded media tracks into
a single output stream.

• Rendering is the process of presenting the media to the user.

Appendix A: Java Media Framework

87

Figure A-4 Stages in Processor (courtesy of Sun Microsystems, Inc., 1999)

What is used extensively in this thesis from JMF is the JMF RTP API. It
allows the playback and transmission of RTP streams. Figure A-5 shows the
high-level architecture of JMF RTP API.

Figure A-5 High-level architecture of JMF RTP API (courtesy of Sun

Microsystems, Inc., 1999).

The Player and Processor model of JMF RTP API is very similar to
Figure A-3 and Figure A-2, but JMF RTP API introduces a new class, called
RTPManager. RTPManager is the starting point for creating, maintaining and
closing an RTP session. The tasks of RTPManager includes to keep track of the
session participant and the streams that are being transmitted, to maintain the state
of the session as viewed from the local participant, to handle the RTCP control
channel and support RTCP for both senders and receivers. Figure A-6 shows the
model of JMF RTP API from the sender and receiver view.

Appendix A: Java Media Framework

88

Media file

Client

RTPManagerDataSource Processor DataSource

Network

RTPManagerDataSourcePlayer

Figure A-6 The model of JMF RTP API from sender and receiver perspective

(courtesy of Sun Microsystems, Inc., 1999).

����
��.�/�

�����0�������!�

This appendix presents hierarchy of the classes developed in this thesis.

Client

ClientImplClientFrame

JFrame

1
1

Client

Service Broker

ServiceBrokerInterface

Remote UnicastRemoteObject Serializable

ServiceBrokerImpl

ServiceBrokerDaemonServiceBrokerFrame

JFrame

1

1

1
1

ServiceBroker

Appendix B: Class Hierarchy

90

Transcoder
Remote UnicastRemoteObject Serializable

TranscoderImpl

TranscoderDaemonTranscoderFrame

TranscoderPlayerImpl

JFrame

TranscoderInterface

TranscoderPlayerInterface

1
1

1

1..n

0..n

1

Transcoder

+�����
����

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman. Data Structures and
Algorithms. Addison-Wesley, USA, 1987.

[2] H. Bharadvaj, A. Joshi and S. Auephanwiriyakul. An Active Transcoding
Proxy to Support Mobile Web Access. Proc. IEEE Symposium on Reliable
Distributed Systems, 1998.

[3] D. Chalmers and M. Sloman. Survery of Quality of Service in Mobile
Computing Environments. Department of Computing, Imperial College,
London, 1999.

[4] D. Chen, R. Colwell, H. Gelman, P. K. Chrysanthis and D. Mossé. A
Framework for Experimenting with QoS for Multimedia Services.
University of Pittsburgh, Pittsburg, PA, USA, 1996.

[5] COMCAR Project. COMCAR – Communication and Mobility by Cellular
Advanced Radio. http://www.comcar.de/overview.pdf, 1999.

[6] G. Coulouris, J. Dollimore and T. Kindberg. Distributed Systems Concepts
and Design. Pearson Education Limited, Essex, UK, 2001.

[7] S. E. Czerwinski, et. al. An Architecture for a Secure Service Discovery
Service. Mobicom'99, Seattle, WA, USA, 1999.

[8] A. Fox, S. D. Gribble, E. A. Brewer, E. Amir. Adapting to Network and
Client Variability via On-Demand Dynamic Distillation. Proc. Seventh
International Conference on ASPLOS, 1996.

[9] Guojun Lu. Communication and Computing for Distributed Multimedia
Systems. Artech House Inc., Norwood, MA, USA, 1996.

[10] IETF. DoD Standard Transmission Control Protocol. RFC 761,
http://www.ietf.org/rfc/rfc0761.txt, January 1980.

[11] IETF. User Datagram Protocol. RFC 768,
http://www.ietf.org/rfc/rfc0768.txt, August 1980.

[12] IETF. Internet Protocol Darpa Internet Diagram Protocol Specification.
RFC 791, http://www.ietf.org/rfc/rfc0791.txt, September 1981.

[13] IETF. Internet Stream Protocol Version 2 (ST2). RFC 1819,
http://www.ietf.org/rfc/rfc1819.txt, August 1995.

References

92

[14] IETF. RTP: A Transport Protocol for Real-Time Applications. RFC 1889,
http://www.ietf.org/rfc/rfc1889.txt, January 1996.

[15] IETF. HyperText Transport Protocol – HTTP/1.1. RFC 2068,
http://www.ietf.org/rfc/rfc2068.txt, January 1997.

[16] IETF. Real-Time Streaming Protocol. RFC 2326,
http://www.ietf.org/rfc/rfc2326.txt, April 1998.

[17] Van Jacobson. PathChar - A Tool to Infer Characteristics of Internet
Paths. Network Research Group, Lawrence Berkeley National Laboratory,
Berkeley, CA, 1997.

[18] K. Jonas. Forget the Net! Architecture, Specification and Implementation
of a Communication System for Real-time Streaming in Heterogeneous
Environments. 1997 Pacific Workshop on Distributed Multimedia Systems,
Vancouver, Canada, July 1997.

[19] K. Jonas, M. Kretschmer and J. J. Mödeker. Get a KISS - Communication
Infrastructure for Streaming Services in a Heterogeneous Environment.
ACM Multimedia 98, Bristol, UK, September 1998.

[20] E. Kovacs, R. Keller, T. Lohmar and A. Held. Adaptive Mobile Applications
over Cellular Advanced Radio. Personal Indoor and Mobile Radio
Communications (PIMRC). London, UK, September 2000.

[21] Z. M. Mao and R. Katz. Achieving Service Portability in ICEBERG. CS
Division, EECS Department, University of California at Berkeley,
California, USA, 2000.

[22] Microsoft Corporation. Understanding Universal Plug and Play White
Paper. http://www.upnp.org/download/UPNP_UnderstandingUPNP.doc,
2000.

[23] Object Management Group (OMG). CORBA Basics.
http://www.omg.org/gettingstarted/corbafaq.htm, 2001.

[24] K. Rothermel. Lecture Note: Introduction to Distributed Systems. Institute
of Parallel and Distributed High-Performance Systems, University of
Stuttgart, Germany, 2001.

[25] John R. Smith, Rakesh Mohan and Chung Sheng Li. Transcoding Internet
Content for Heterogeneous Client Devices. Proc. IEEE International
Conference On Circuits and Systems (ISCAS), May 1998.

[26] R. Steinmetz and Klara Nahrstedt. Multimedia: Computing,
Communications and Applications. Prentice Hall Inc., NJ, USA, 1995.

[27] Sun Microsystems Inc. Java Media Framework Programmer’s Guide.
http://java.sun.com/products/java-media/jmf/2.1.1/guide/, 1999.

[28] Sun Microsystems, Inc. Java Remote Method Invocation Specification.
http://java.sun.com/j2se/1.3/docs/guide/rmi/spec/rmiTOC.html, 1999.

References

93

[29] Sun Microsystems Inc. Jini Specifications v1.2.
http://www.sun.com/jini/specs/, 2001.

[30] Sun Microsystems Inc. Jini Network Technology Datasheet.
http://wwwwswest.sun.com/jini/whitepapers/, 2001.

[31] A. S. Tanenbaum. Computer Networks 3rd Edition. Prentice Hall Inc., NJ,
USA, 1996.

[32] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall Inc., NJ, USA, 2002.

[33] H. J. Wang, et. al. ICEBERG: An Internet-core Network Architecture for
Integrated Communications. IEEE Personal Communications (2000):
Special Issue on IP-based Mobile Telecommunication Networks, 2000.

[34] World Wide Web Consortium (W3C). Simple Object Access Protocol
(SOAP) 1.1. http://www.w3.org/TR/SOAP/, 2000.

[35] L. C. Wolf, C. Griwodz and R. Steinmetz. Multimedia Communication.
Proceedings of the IEEE, Vol. 85, No. 12, December 1997, pp. 1915 – 1933.

