University of Stuttgart

Faculty of Computer Science

Program of Study: Information Technology

Examiner:

Supervisor:

Begin:

End:

Prof. Dr. K. Rothermel

Dipl. Inform. Detlef Bosau

December 1, 2001

May 31, 2002

CR-Classfication: C.2.1,C.2.2,C.2.4

Master ThesisNr. 1978

Development of
Network Service Infrastructure
For Transcoding Multimedia Streams

Antony Pranata

Institute of Parallel and

Distributed High-Performance Systems
Distributed Systems Department
University of Stuttgart

Abstract

In the COMCAR project, distributed multimedia applications can be anin
mobile terminals at different locations, e.g. a mobile terhmmay have access to
the Internet using '3 generation mobile networks, or the mobile terminal may
have access to a campus LAN using WaveLAN or HiperLAN.

Adaptive applications, in order to be run, can be adapted depending on the
mobile terminal’s location, its facilities and the network conpeacin use. One
possibility of adaptation is the use of transcoding services éaliarstream when
there is no common media format supported both, at the source and the bak of t
stream, or none of the supported format matches the limitatiotie aivailable
network connection. For example, a media stream is transcoded fhoghlga
resource consuming format, Cinepak, to format which requires lsssirces,
H.263.

Based upon Java, Jini and JMF, in this thesis a service inthse for
transcoding services is to be designed and prototypically implethenihe
service infrastructure is to provide 1) mechanisms to find amdtshnscoding
services, which are appropriate for a given transcoding problervids
brokering) 2) mechanisms to construct the service chain froredinee through
one or more transcoding services to the sink according the defsprovided by
the application.

Acknowledgement

| would like to thank to Prof. Rothermel for giving me a change to do this thesis in
Distributed Systems department and Ernoe Kovacs who has introduced this topic.

| would also like to thank to Detlef Bosau and Klaus Roehrle fostasgime
during the writing of this thesis. Their feedback has helped eng much to
improve the quality of this thesis.

Finally 1 would like to thank to my mother and all my friends hespeeially
Novi who has supported me, Larry, Irwan, Ferry, Inti, and all Indonasiatents
in Stuttgart.

Table of Contents

ADSEFACT ... b i
ACKNOWIEAGEMENL ... e i
Table Of CONTENES.......ooieiee e s v
LISt Of FIQUIES ...ttt s Viii
LISt Of T@BIES....eeeeeeeeee e s X

Chapter 1 INtrodUCtioNc.cceeiieeceeceee e 1
1.1 Y1) 1)Y= o] o S 1
1.2 The COMCAR PrOJECEuuiiiiiiiiiiie e e e 2
1.3 Organization of the ThesSIS.........ccccuiiiiiiiii e

Chapter 2 Distributed Multimedia Systems.........ccccoovvevvveeveececeeieenee, 5
2.1 TermiNOIOQY ..ccccoeuiiiiiitiiiiieii ettt e e

2.2 Applications of Distributed Multimedia Systems 6
2.2.1 Conversational Applications...........c.cceeiiiiiiiiiiiiieeeieiieee e 6
2.2.2 Messaging AppliCatioNSccovviiiiiiiiiici e,
2.2.3 Retrieval applicationsccooiiiiiiiiiiiiie e,
2.2.4 Distribution AppliCatioNScccovviiiiiiieiiece e, 7
2.2.5 Applications in This TheSiS ..., 7

2.3 Multimedia COMPIESSIONccuueiiiiiiiiiiiiiiiiee e
2.4 NEIWOTKSt e et e e e e ea e e eaeees
241 LAN e a e e e e e e e e 9
2.4.2 WIreless NEtWOIKcoovuiiiiiiiiiiic e
2.4.3 COMPAIISON...uuiiiiiiiiiiie ettt e e e e e e e e e s

2.5 Network ProtoCoIS ...t 10
2.5.1 Internet ProtoCol (IP)uuuuuiiiiiiiiiiiiiiiiieee e 11
2.5.2 Transmission Control Protocol (TCP).........ccccuuviiiiieeeeieiennnnn. 11

iv

2.5.3 User Datagram Protocol (UDP)........cccccoeviiviiiiiiiieeeiiiiiiee e, 11

2.5.4 Real-time Transport Protocol (RTP)cccooovvviiiiiiiiiiiiiineen, 11
2.5.5 Real-time Transport Streaming Protocol (RTSP).................. 11
2.5.6 HyperText Transport Protocol (HTTP)ccoovviiiiviiiiiiieeeenn, 12
2.6 Quality of Service (QO0S)cccccuumiiriiiiiiiiiieee e 12
2.7 SUMIMIATY ..ttt e e e e e e e et e e s e aa e e eanneeees 12
Chapter 3 Java-based Middleware...........ccoooveeveeiinenieere e 13
3.1 Introduction to Middleware.............c.oouiiiiiiiiiiiiiiie e 13
3.1.1 Distribution TranSPar€nCycccuuuuiiieeerirriiiieeeeeeiiiieeeeneennnnnns 14
3.1.2 Middleware MoOdelS.........ccoooiiiiiiiiiiciieiee e 14
3.1.3 Middleware SEIrVICEScoviiiiiiiiiiiieeeeiie e 15
3.2 JAVA RMIcceii e 15
3.2.1 RPC Failure SEmMantiCS.........cccevvirerieiiiiiiiiiiie e e e e e eeeeeeeeeeeennns 16
3.3 TN ettt ———————————————— 16
3.3.1 Architecture of JiNi......c.cccoveiiiiiiiii 17
3.4 SUMIMABIY ..ttt e e e e e e e 18
Chapter 4 Transcoding INfrastruCture.........ccccevceeveiceeseese e 19
4.1 EXample SCENAIIOuuuueiii i e e e e e eeeeeees 19
4.2 SOIULION. .. 20
4.2.1 Solving Heterogeneity and Mobility Problems..................... 21
4.2.2 Transcoders to Solve Heterogeneity and Mobility Problems 22
4.2.3 Lookup Service and Service BroKer..........ccooeeeieeviiiiiiiiiinnnnnn, 24
4.3 REQUITEMENTS ...t 25
Nt R = V= 25
G B I - 1o o [25
B T T O 11T o | ORIt 25
4.3.4 ServiCe BroKerccooviiiiiiiiiiiiie e 26
4.3.5 LOOKUPD SEIVICE....uuuiiiiii i et e e e e e e e e eeeaaaneees 26
4.4 SUMIMIATY ..ttt e e e e e e e et e e s eaa e e e eaneeeees 26
Chapter 5 ArchiteCtur@ DESIgN.....cc.eeviieereee e 27
51 Service BroKeriNgc.uuiiiiiiiiiiii i 27
5.1.1 Finding Source Format and Destination Format 27
5.1.2 Finding Transcoding Format..............cccovvviiiiiieiiiiiine e, 28
5.1.3 Assigning Priority to Transcoding Format...........cc.ccccoeeeeee 29

5.1.4 Cascade FIilteriNgccccoeiiiiiiiiiiieeeeie e 31
515 QOS ParametersScoiiiiiiiiiiiiie e 33
5.1.6 FIOW CRAIt ..o 33
5.2 Service ChaiNiNg.......ccoocuuuriiiiiiiiiiieeeeee e 35
5.2.1 FIinding LOOKUP SEIVICEccccuiiiiiiiiiiiiiiiiieeeeee e 35
5.2.2 Service RegiStration............cccccuuiiiiiiiiiiiiiiieeeeeee e 36
5.2.3 Requesting TranSCOder SEIVICEuuuuuiiiiiieieeeeereeeeeeeeennnenns 39
5.2.4 Server-initiated REQUESTccoiviiiiiiiiiiiiiiieeeeeee e 41
5.2.5 Streams Garbage........cccccuumriiiiiiiiiiiiiiieee e 44
5.2.6 Transcoder HaNAOVETuuuiiiiiiiiiiiiiiieeeeeeeee e 45
5.3 Transcoder Configuration............ccuueiieeiiiiiiiiieeeeeeieee e 46
5.4 N-LeVel TranSCOAING.......uuueeiiiiiiiiiiieeeeeeeaeeeeeiiiieeeeeee e a7
5.4.1 Constructing Directed Graph.............ooooiiiiiiiiiiiiiiieeeeee 48
5.4.2 Optimizing Directed Graphcccccuuvmiiiiiiiiiiiiiiis 49
5.4.3 Adding Client and SErvercccccccciiiiiiiiiiee, 50
5.4.4 Constructing Weighted Graph.............ooooiiiiiiiiiiiiie 52
5.4.5 Shortest Path Algorithmccccvviiiiiiiii s 53
5.4.6 FIOW Chart...cccoooi i 54
5.4.7 Implementation Problems............cccooiiiii 56
55 SUMIMIATY ..ttt e e e e e e e e e e e e e e e eaneeeees 56
Chapter 6 Implementation..........ccoeveeieiereree e 57
6.1 Platform ... 57
6.1.1 Programming LaNQUAGJEcccceeriiiriiiiieiiiiiiiiee e 57
6.1.2 Communication Protocol...............cccceiiiiiiiiiiiiinicii, 58
6.1.3 Service Discovery ProtoCol........ccccooeveviiiiiiiiiiiiiiie e, 58
6.1.4 AICNITECIUIE ... 59
G I - g o o Lo = PSSR 59
6.2.1 Transcoderinterface and Transcoderimpl...............ooeiiinnnnns 60
6.2.2 TranscoderPlayerinterface and TranscoderPlayerimpl 62
6.2.3 TransSCOAerDaCMON.......uuuriiiiiiiiiiiieee e 64
6.3 SEIVICE BIrOKEY ... 66
6.3.1 ServiceBrokerDaemon..............uuuuuiiiiiiiiieeieeeeieeee 66
6.3.2 ServiceBrokerInterface and ServiceBrokerimpl 67
6.3.3 ClientPreferenCes. ... 67
6.3.4 SYStEMINTO....uuuiiiiiiiiii s 67
6.4 O 111 o | 68

6.5 Establishing Connection..............ccoeoiiiiiiiiiii e, 69
6.6 SUMIMABIY ..t e e e e e e 70
Chapter 7 Integration and TeSHING......ccceveeveieevieie e 71
7.1 INEEOIATION . ..ciiiiiiieee e 71
A% S R = = 0 A1V T = SR 71
T7.1.2 SOMWAIE ... e 71
A0 G T 1= 4V o = PR 71
7.1.4 INStallationoiiiiiiiii e 72
7.2 TESHNG ettt 75
7.3 SUMIMABIY ..ottt e e e e e e 76
Chapter 8 Related WOrKS.......ccoveiieieceesicie et 77
8.1 Proxy-based TranSCOAINGccuviviiiiiiieiiiiiiiiesiiiieeeeeeeee 77
8.1.1 ArCHItECIUIE c..vve e 77
8.1.2 Contribution of ThiS TheSIS.........cuvvviiiiiiiiiiieeeeeeeeeeeeeeeee 78
8.2 KISS PrOJECT ... 79
8.2.1 Contribution of This ThesSiS.........cccccciiiiiiiiiiiii e, 80
8.3 [CEBERG PrOJECT....ceiiiiiiiiiiiiieee ettt 80
8.3.1 Contribution of ThiS TheSIS..........uuuviiiiiiiiiiie e 81
8.4 SUMIMIATY ..ttt e e e e e e e et e e e e e e e e eaneeeees 82
Chapter 9 Summary and FUtUre WOorks.........ccoeveveneniieicnenese e 83
9.1 SUMIMIATY ..ttt e e e e e e e et e e e eaa e e e eanneeees 83
9.2 FULUIE WOTKS ... 83
Appendix A Java Media FrameworkK..........cccoeevveveveeneeieeseese e 85
Appendix B ClassHIerarChy ..o 89
(@4 117 o | RSP 89
SEIVICE BIrOKET ..uuniciieeiii et e et e e e e 89
I =1 5100 To [T S UPPTPSR 90
REFEIENCES.......ceeeeeee e e e 91

vii

List of Figures

Figure 1-1The COMCAR system (courtesy of the COMCAR project)........... 3
Figure 2-1Architecture of distributed multimedia systems (courtesy ofdbosl
L= = | 00 1 6
Figure 2-2TCP/IP and OSI reference model.............ccoooiiiiiiiiiiiiiiieeeen 10
Figure 3-1 Architecture of a distributed system as middleware (courtesy of
Rothermel, 2001)........cii i e aaaaa 14
Figure 3-2Principle of RPC between a client and server program (courtesy of
Tanenbaum and van Steen, 2002).........ccoeviiieeeeeiriiiiieeeieerrre e e e e e e e 16

Figure 3-3The Jini architecture (courtesy of Sun Microsystems, 2001)..... 16
Figure 3-4A flow diagram of Jini technology (courtesy of Sun Microsystems,

1200 TP PPPRPP 17
Figure 4-1Heterogeneity of client devices and network connections........... 20
Figure 4-ZThe architecture of a simple transcoding infrastructure............... 22
Figure 4-3Transcoders for mobile clients...........ccccooviiiiiiiii i, 23
Figure 4-4Another advantage of the transcoding infrastructure................... 24
Figure 4-5Architecture of the network service infrastructure for transcoding

MUItIMEdIa StIEAMS........ciiieeeeeeeeeer e e e e e e e e e e ees 25
Figure 5-1How to find the transCoder?..........oooo it 28
Figure 5-2An example of a list of transcoding formats and destination forr@fts.
Figure 5-3Cascade filtering to the list of transcoders..........ccccccevveeiiiinnnnnnnn, 32
Figure 5-4Flowchart of service brokering.........ccccccceviiiiiiiiiiiiiiiieeeee 35
Figure 5-5Registration of service broker using multicast request................ 37
Figure 5-6 Registration of service broker using multicast announcement and

UNICASTE AISCOVEIY . ..utiiieieeette ettt enaaaas 37
Figure 5-7A time diagram of a Service ID............cccooviiiiiiiiiiii i, 38
Figure 5-8Stream and control flow of the client-initiated request................. 39
Figure 5-9Time diagram of client-initiated request for multimedia streams41
Figure 5-10Architecture of the server-initiated service chaining................... 42
Figure 5-11Time diagram of server-initiated request for multimedia streandsl
Figure 5-12Time diagram of elimination of streams garbage........................ 45
Figure 5-13xample of flat transcoding infrastructure.............ccccceeevevieeninnnnnn. 46

viii

Figure 5-14Example of hierarchical transcoding infrastructure.................... 47
Figure 5-15Service brokering and service chaining in N-level transcoding.48

Figure 5-16Example of four transcoders in a network............ccooeevvvvviiiieeeennnn, 49
Figure 5-17Directed graph for the transcoders...........cccooeeeviiiiiiiiciiii e, 49
Figure 5-18Directed graph after optimization..............ccccceeeveeeiiiiiii e, 50

Figure 5-19Directed graph for the transcoders, the server and the client... 51
Figure 5-20Another directed graph for the transcoders, the server and thd.clien

... 51
Figure 5-21Two possible chains from the server to the client....................... 52
Figure 5-22Weighted and directed graph for the transcoders...................... 53
Figure 5-23inding the shortest path using Dijkstra algorithm...................... 54
Figure 5-24Flow chart of service brokering and service chaining of N-level

L= 10 15T oo To [0o RSP 55
Figure 6-1 Architecture of transcoder, client and service broker from Java

PEISPECTIVE. ...ttt e e e e e e e e e e e e e e e e eas 59
Figure 6-2Architecture of the tranSCOUer.............ooveiiiiiiiiieic e 60
Figure 6-3Stream flow in the transcoder player.........ccccccoevriiiiiiiiiiiciiiiiiiieeee 63
Figure 6-4Attributes of @ tranSCOUEN-..........ccoiiiiiiiiiie e 65
Figure 6-5Not all source formats can be transcoded to the destination forBgts.
Figure 6-6Architecture of the service Droker...........cccccvviic, 67
Figure 6-7Stream flow in the ClIENL..........eeiiiiiiiiii e 69
Figure 6-8Protocols to establish a connection from Java perspective......... 70
Figure 7-1nstalling the components of the transcoding service into compuégers.
Figure 7-2The configuration of teSting PUIPOSE.........covvvieeiiriiiiiiiiiiiiiiieeeee 75
Figure 8-1Basic architecture of proxy-based transcoding (courtesy of A. Fox,

EL.ALL, LO96).. .. i 77
Figure 8-2Architecture of network infrastructure of KISS project (courtesi{.of

JoNas, et. @l., 1998).......uuiiiiiii i ———————— 79
Figure 8-30ne scenario of APC in the ICEBERG project (courtesy of Mao and

RAtZ, 2000)... ... i e e e e e 81

List of Tables

Table 2-1Bandwidth requirements of uncompressed multimedia streams.... 7

Table 2-2Comparison of several audio compression algorithms.................... 8
Table 2-3Comparison of several video compression algorithms.................... 8
Table 2-4Comparison of network bandwidth.............cccccooooi 10
Table 4-1Different capabilities of some typical computer devices................ 20
Table 5-1Priority table of audio formats in the service broker...................... 30
Table 5-2Priority table of video formats in the service broker....................... 30
Table 5-3Priority table of audio and video formats in the service braker.... 31
Table 5-4Finding the shortest path using Dijkstra algorithm......................... 54
Table 7-1List of transcoders in the integration patrt............ccoooovviviiiiieerennnnnnn. 74

Chapter 1

Introduction

1.1 Motivation

The explosive growth of the Internet and mobile computing introduces two
main problems in distributed multimedia applications. The first probls
heterogeneity of client devices and their network connections.cligm devices
may vary from desktop PCs, notebook computers, PDAs to mobile phonels, whic
their capabilities also vary along many axes, including screen size, colbrashejpt
processing power [8]. Furthermore, they may connect to the Inteaneifferent
networks, such as wired LAN, wireless LAN or wireless WAN.

The second problem is mobility of clients. The clients may beirgov
while they are accessing multimedia streams. It may Gapseblem because the
network connections may change from time to time, ranging fronryagaod
network to a congested network.

The two problems described above make it difficult for a multimedia
server to provide a streaming service which is appropriate for eveny clievery
situation. A solution to the problems above, which is presented in this thesis, is by
converting multimedia streams to the appropriate format on-the-flihe
converting process is also known #&snscoding which means converting
multimedia streams from one format to another format. The tvdimgg process
itself needs a new server, calkeanscoder

The purpose of this thesis is to develop a prototype of a networkeservi
infrastructure for transcoding multimedia streams. The prototypesaa client
on a network to request a multimedia stream and the trandcadscode it to the
appropriate format for the client. The service infrastrigcsimould be able to find
the appropriate transcoder and build chain from the server to the client.

The prototype proposed in this thesis is designed for a Campus LAN onl
It may need some modifications to be applied for larger areas, such as the.Internet
Scalability is an important issue to be considered when applyingftastructure
to the Internet because the number of users may be in order of millions.

There are a lot of areas which can use this transcodingceervi
infrastructure. | will give four examples of scenarios herée first scenario is

Chapter 1: Introduction 2

for exhibitions, such as CeBit or COMDEX. They may use the imfretsire to
broadcast a video news or any multimedia information about the gahibiThe
visitors, which use various types of devices, are able to wha&hkideo because
transcoders transcode the original stream to the appropriate format for them.

The second scenario is for sport events, such as Olympic Games or
Football World Cup, which takes place in a city. The committeeh@fsport
event may want to broadcast the latest news for reporteiisitars. They may
install transcoders in the stadiums or buildings where the videdeavatched
using client devices, such as notebooks or PDAs.

The third scenario is for museums which offers multimedia sse@am
explain the content or history of their museums. Currently, mangeoms
provide a tape-player or a head-set so that the visitorsbldaalisten or watch
the history of some other stuffs there. Using the transcodestinfcture, the
visitors are now be able to use their mobile devices to watchistn.
Furthermore, they may be walking around while listening to the explanation.

The last scenario is the most ambitious one and it is one gaddleof
COMCAR project. The end users on the cars or trains should édcabtcess
multimedia streams while they are moving. For example, the transcoded beoul
able to transcode the Digital Video Broadcast (DVB) or Dighiadio Broadcast
(DAB) depends on the network conditions.

1.2 The COMCAR Project

This thesis is part of the COMCAR project. The COMCAR mjtself
is a part of UMTSplus, a new system concept sponsored by the @ekivastry
for Education and Research (BMB+F), which aimBJaiversality and Mobility in
Telecommunication Networks and SystemsPartners in COMCAR are
DaimlerChrysler AG, Research & Technology Eurolab Deutschland Giabhly
International (Europe) GmbH, and T-Nova Innonvationgesellschaft mbH [5].

The COMCAR project targets at the conception and prototypical

realization of an innovative mobile communication network, which Saikfy

the increasing demand for IP-based multimedia and telematigseseespecially

in cars and railways. The main focus in COMCAR is on asymcaétand
interactive IP-based services (see Figure 1-1). Existinggpooming elaborated
radio technologies and infrastructures such as GSM, UMTS, DVB-TD&fI
shall be used and optimized to bring asymmetric high-quality $@ebaervices to
vehicles like cars and trains.

COMCAR will provide flexible communication environment in which
QoS parameter will change on a wide scale. COMCAR w#ingne how this
scenario might influence emerging Internet technologies for etiegrQoS in IP
networks. Furthermore, COMCAR will also develop mobile middleware
technologies that allow adaptive multimedia applications to resettailored to
the changing user situation.

Chapter 1: Introduction 3

UMTE=
addip’unal downlink

U het "
o
"
kS ‘-1

GE

LUMTS

Mewvr Frequencies
[e.g..below 1 GHZ)

Figure 1-1 The COMCAR system (courtesy of the COMCAR project).

The result of this thesis might be used in the COMCAR progot@ally
in the adaptation application [20]. Currently the adaptation is basedferent
streams available on the source. The introduction of transcodirggtimicture
will make the adaptation algorithm more flexible because therenore different
choices of streams which can be selected.

1.3 Organization of the Thesis

In general, this thesis consists of two main parts, conceptapdrtiesign
part. The concept part, which contains Chapter 1 to 3, discussesrtiiction
to distributed multimedia systems. The design part, whickaow Chapter 4 to
9, discusses the requirements, design, implementation and evaluatitve of t
transcoding infrastructure.

Chapter 1 (this chapter)ptroduction discusses the background of this
thesis and gives some application scenarios in which the cédbis thesis may
be applied.

Chapter 2,Distributed Multimedia Systemsliscusses some important
aspects in distributed multimedia systems which have relatigthsthis thesis,
including the terminology and applications of distributed multimedideBys
multimedia compression, networking and network protocols for distributed
multimedia systems and finally Quality of Service.

Chapter 3, Java-based Middlewarediscusses middleware of distributed
systems, but it focuses on Java-based middleware. Therewaremain
discussions in this chapter, RMI and Jini.

Chapter 4,Transcoding Infrastructurediscusses the background why we
need transcoding infrastructure in distributed multimedia systdtralso covers
the requirements of a common transcoding infrastructure.

Chapter 1: Introduction 4

Chapter 5,Architecture Designdiscusses the architecture design of the
transcoding infrastructure implemented in this thesis. There im&n
discussions, service brokering and service chaining.

Chapter 6, Implementation discusses the implementation of the
transcoding infrastructure in Java platform. It explains how eanipaonent of
the transcoding infrastructure can be implemented in Java technology aed.class

Chapter 7]ntegration and Evaluationdiscusses how the components of
the infrastructure can be integrated in real-world. This chagt® gives an
evaluation of the tests performed in this real infrastructure.

Chapter 8Related Worksdiscusses some related works which also deal
with transcoding infrastructure. This chapter also discussesotfteibution of
this thesis to the community.

Chapter 9Summary and Future Workgives summary of this thesis and
some outlooks in the future.

Chapter 2

Distributed Multimedia Systems

This chapter gives an overview of some aspects in distributéthmadia
systems which have relations with this thesis. It starth some important
terminologies and application scenarios in distributed multimagdi@®ms. After
that, it explains multimedia compression which is very importardistributed
multimedia systems and used very intensive in this thesis. n&€Rke part is
networks and networking protocols which can be used by distributed nuliime
systems. At the end of this chapter, there is a discussion abality@f Service

(QoS).

2.1 Terminology

Before discussing distributed multimedia systems, | first dssaudtimedia
systems and multimedia communications. Lu [9] defme#timedia systemas
any systems capable of handlidgcrete mediaas well as at least one type of
continuous media digital form.

Discrete media (also calletiime-independent mediar static mediq are
media that do not have a time dimension, their meanings do not depehd on t
presentation time. Discrete media include alphanumeric datgrapdics. On
the other hand, continuous media (also caliex-dependent mediar dynamic
medig have a time dimension, their meanings depend on the rate at Wwhich t
are presented. Continuous media include animation, audio and video.

According to Wolf et. al. [35]multimedia communicationdeals with the
transfer, the protocols, the services and the mechanisms ofifomendia in/over
digital networks.

Multimedia systems can be classified into standalone multanggitems
and distributed multimedia systems [9]. Standalone multimeghteras use
dedicated system resources and multimedia communications is not tedppor
while according to Steinmetz and Nahrstedt [26], in distributed mmedtia
systems, data of digital and continuous media are transmittednforchation
exchange takes place.

Moreover, in digital networks, transmitted information or mediadarieled
into packets and subsequently sent away from the source to the tawstind
sequence of individual packets transmitted in a time-dependentriaishcalled
data streamsor media streams Multimedia communications usually use

Chapter 2: Distributed Multimedia Systems 6

isochronous transmission mqdehich means there are minimum and maximum
end-to-end delay for each packet of media streams.

2.2 Applications of Distributed Multimedia Systems

Coulouris et. al. [6] proposed the architecture of distributed multaned
systems as shown in Figure 2-1. It shows some multimediansysbn LANS
which are connected through a WAN. The multimedia systems hemapable
of accessing digital video server and digital TV/radio broadcast.

Video camera

and mike™—a
~ - 3 3
==
Local network Local network
—_—
Wide area gateway Video Digital

server TV/radio
server

Figure 2-1 Architecture of distributed multimedia systems (courtesy of Coulouris
et. al., 2001).

The typical distributed multimedia systems are capable of stpgor
variety of applications. In general, there are four types of applications [9], i.e.:
» Conversational applications.
* Messaging applications.
* Retrieval applications.
» Distribution applications.

2.2.1 Conversational Applications

Conversational applicationéor live application$ deal with bi-directional
communications with real-time, end-to-end media transfer. Theyimpluman
user and another human user or a system.

The examples of conversational applications are video conferemce an
video telephony.

2.2.2 Messaging Applications

Messaging applications cover the non-real-time or asynchronous egchang
of multimedia data via electronic mailboxes.

Chapter 2: Distributed Multimedia Systems 7

2.2.3 Retrieval applications

Retrieval applications allows the users to retrieve mddia stored in a
server. The media data are available to the users anytinthey are exclusively
transmitted from the server to the requesting client. Moretiverusers is able to
control the media streams, for example play, pause, stop, rewind or fast forward.

The examples of retrieval applications are VOIdéo On-Demandand
AOD (Audio On-Demand

2.2.4 Distribution Applications

Distribution applications are used to distribute media togelaumber of
users. There exists a point-to-multipoint connection between the media server and
the users. The users are unable to control the media strearapt en
configurations where one master have the permission to control the streams

The examples of distribution applications are audio broadcast, such a
Internet radio, and TV broadcast.

2.2.5 Applications in This Thesis

This thesis only deals with conversational, retrieval and bligtan
applications. The messaging applications is not covered in this bieesiase it is
done asynchronously. However, the implementation part of this tmsssders
only retrieval and distribution applications.

2.3 Multimedia Compression

Uncompressed multimedia data require a lot of storage caadtyery
high bandwidth [26]. For example, uncompressed audio streams of CDy qualit
sampled at a rate of 44.1 kHz and is quantized with 16 bits per samgle
channels, hence the bandwidth requirements is 44100 x 16 x 2 = 1.41 Mbps.

Table 2-1 shows bandwidth requirements for some multimedia strdams.
is shown in this table that uncompressed standard TV video caneot bev
transmitted via 100 Mbps Ethernet LAN.

Table 2-1 Bandwidth requirements of uncompressed multimedia streams.

Sampleratesor Bandwidth

Dimensions Requirements
Telephone speech 8 kHz, 8 bit, 1 channel 64 kbps
CD-quality sound 44.1 kHz, 16 bit, 2 channels 1.41 Mbps
Standard TV video 640 x 480 pixels x 16 bit, 25 fps 123 Mbps

The use of multimedia compression is therefore very essergiatce the
source should encode the streams and the destination should decode them,
multimedia compression imposes substantial loads on processingcessairch
as CPU power [6]. Some compression methods even need special-purpose
hardware calledodecqcoders/decoders).

Chapter 2: Distributed Multimedia Systems 8

Table 2-2 and Table 2-3 compares some compression algorithms
commonly used today. Steinmetz and Nahrstedt [26] and Lu [9] discuss the
compression algorithms in more detail.

Table 2-2 Comparison of several audio compression algorithms.

Audio Sampling | Bitsper Bit Computational

Compression Rate Sample Rate

G.711 (-Law) 8 kHz 8 bits 64 kbps Low

G.721 8 kHz 8 bits 32 kbps Low

G.723 8 kHz 8 bits 24 and Low

40 kbps

DVI 8 kHz 4 bits 32 kbps Low

GSM 06.10 - - 13.2 kbps Low

MPEG-1 Layer 1 | 32, 44 and16 bits 32 - 448 kbps High
48 kHz

MPEG-1 Layer 2 | 32, 44 and16 bits 32— 384 kbps High
48 kHz

MPEG-1 Layer 3 | 32, 44 angd16 bits 32 — 320 kbps High
48 kHz

Table 2-3 Comparison of several video compression algorithms.

Video Resolution For mat Bit rate Computational
Compression
H.261 CIF, QCIF px64 kbps Low
H.263 CIF, QCIF, SQCIF, 28.8 — 768 kbps Low

ACIF, 16CIF
MPEG-1 352 x 240 pixels, 30 fps 1.5 Mbps High
MPEG-1 352 x 288 pixels, 25 fps 1.5 Mbps High
MPEG-2 720 x 480 pixels, 30 fps 15 Mbps Very High
MPEG-2 1920 x 1080 pixels, 30 fps 80 Mbps Very High
MPEG-4 - 28.8 — 500 kbps High

2.4 Networks

As explained in the first section, distributed multimedia systewsd
digital networks to transmit the streams. Currently thezevany types of digital
networks, but Tanenbaum [31] and Coulouris et.al. [6] categorize thenfivat
main types, i.e. LANI(ocal Area Network MAN (Metropolitan Area Netwopk
WAN (Wide Area Netwonk wireless network and internetworking. Since this
thesis focuses on a Campus LAN, only LAN and wireless networliscessed
here.

Chapter 2: Distributed Multimedia Systems 9

241 LAN

LAN uses twisted copper wire, coaxial cable or optical fimecannect
computers in a department or a building. The examples of LA&NE#nernet
(IEEE 802.3 standard), which offers 10 Mbps to 1000 Mbps bandwidth, and
Token Ring (IEEE 802.5 standard).

2.4.2 Wireless Network

Wireless network is used for portable and mobile devices whichresqui
wireless communication. In general, wireless network can alstivied into
three sub-categories, i.e.:

* WPAN (Wireless Personal Area Netwgrk
* WLAN (Wireless Local Area Network

» WWAN (Wireless Wide Area Netwqrk

WPAN supports only communication within a few meters. Therevave t
important standards of WPAN, i.e. IrDA and Bluetooth. WPAN is notidensd
in this thesis due to the limitation of its communication range.

WLAN, like wired LAN, covers a building or a department in a camp
Nowadays there are two types of WLAN that are widely used WavelLAN
(IEEE 802.11 standard), which is also called Wi-Fi, and HiperLAN.

WWAN covers mobile phones networks which are currently used, called
second generation of mobile networks. The examples of them are(GiShal
System for Mobile communicatjonsed in Europe and CDPX€llular Digital
Packet Daty used in the US. Currently, the Z'Seneration mobile network,
called GPRSGeneral Packet Radio Servigess entering the market with higher
bandwidth than GSM or CDPD. The future of mobile networkédigéneration,
called UMTS Universal Mobile Telecommunication Services

2.4.3 Comparison

Table 2-4 summarizes some different networks of LAN and vesele
network which is mostly used in the discussion of this thesis.

Chapter 2: Distributed Multimedia Systems

10

Table 2-4 Comparison of network bandwidth.

Networ k Bandwidth
LAN Ethernet (802.3) 10 Mbps and 100 Mbps
Gigabit Ethernet 1 Gbps
Token-Ring (802.5) 4 Mbps and 16 Mbps
Wireless LAN WavelLAN (802.11hb) 11 Mbps
WaveLAN (802.119) 54 Mbps
HiperLAN/1 20 Mbps
HiperLAN/2 54 Mbps
Wireless WAN GSM 9.6 to 14.4 kbps
CDPD 19.2 kbps
HSCSD 56 kbps
GPRS 56 to 144 kbps
UMTS 144 kbps, 384 kbps, 2 Mbps

2.5 Network Protocols

As explained in the first section, distributed multimedia esyst need a
digital network to transmit the streams. This thesis is Ijndsised on IP
network. Tanenbaum illustrates the reference model of TCP/IP retasr
opposed to OSI reference model as in Figure 2-2.

oSl TCP/IP
. Application
7 Application HTTP, FTP, RTP, RTSP
6 Presentation
5 Session
4 Transport Transport
P TCP UDP
3 Network Int?Fr)net
2 Data link Host-to-network
Wireless LAN
1 Physical Wireless WAN

Figure 2-2 TCP/IP and OSI reference model.

In the lowest layer of TCP/IP model, there are several pessitivorks
which is discussed in the last section. On each upper layer,ish@me or more
different protocols which can be used.

Chapter 2: Distributed Multimedia Systems 11

2.5.1 Internet Protocol (IP)

IP (RFC 791) [12] is designed for use in interconnected systems ketpac
switched computer communication networks. IP provides for tramsgiitocks
of data called datagrams or packets from sources to destinatioae sources
and destinations are hosts identified by fixed length addresses. IP versiod)4 (IPv
uses 32 bit length addresses divided into four parts, for example 129.69.209.104.
IP version 6 (IPv6), which is designed to overcome the limitatiolPv4, uses
128 bit length addresses.

2.5.2 Transmission Control Protocol (TCP)

TCP (RFC 793) [14] is intended for use as a reliable host-to-hosicptot
between hosts in packet-switched computer communication networks, and in
interconnected systems of such networks.

Since TCP provides reliable connections, it is used in thissties
controlling the streams, for example to request a stream or play a stream.

2.5.3 User Datagram Protocol (UDP)

UDP (RFC 768) [11] is defined to make available a datagram robde
packet-switched computer communication. UDP is a procedure fdicatgm
programs to send messages to other programs with a minimum otqirot
mechanism. As opposed to TCP, the delivery and duplicate protectiomoar
guaranteed in UDP, in other words it provides unreliable delivery of streams.

Since UDP provides unreliable connections, it is used in thisstifies
delivering multimedia streams. In most cases, small patdetisin multimedia
streams are acceptable from the user point-of-view. As ati@gdiCP is not
suitable for delivering multimedia streams because this protimed not give
time integrity. Since TCP is a reliable protocol, it will retrarismy loss packets.
In multimedia applications, such conversational applications, reatrtims
packets loss will not make any difference from the recipient side.

2.5.4 Real-time Transport Protocol (RTP)

RTP (RFC 1889) [14] provides end-to-end network transport functions
suitable for applications transmitting real-time data, suchudgar video over
multicast or unicast network services. RTP typically runs orotddDP, but it
may be used with other suitable underlying network protocols. RTP aplels ty
identification, sequence numbering, timestamping and delivery magtewi the
IP packets to provide end-to-end delivery services for real-time data.

2.5.5 Real-time Transport Streaming Protocol (RTSP)

RTSP (RFC 2326) [16] is an application-level protocol for control dwer t
delivery of data with real-time properties. In other words, RESE as a
"network remote control" for multimedia servers. The streaorgralled by
RTSP usually use RTP, but the operation of RTSP does not depend on the
transport protocol. Some methods available in RTSP include SETLAY, P
RECORD, PAUSE and TEARDOWN.

Chapter 2: Distributed Multimedia Systems 12

2.5.6 HyperText Transport Protocol (HTTP)

HTTP (RFC 2616) [15] is an application-level protocol for distributed,
collaborative, hypermedia information systems. HTTP is widely usétorld
Wide Web for data transfer, and in fact many media providers Steremedia
files on HTTP servers.

2.6 Quality of Service (QoS)

Currently IP protocol only allows end-to-end delivery servicé Wittest-
effort” delivery model. It means packets will be deliveredh®e destination as
soon as possible without any commitment to bandwidth or latency. isT hist
adequate for distributed multimedia systems because the mexrtimg packets
depends on the time. Some protocols have been introduced to allow end-to-end
delivery service on IP protocol, such as ST&¢ Internet Streaming Protocol
Version 3 [13] , Heidelberg Transport System [9] and Tenet [9].

According to Lu [9], distributed multimedia systems need end-to-end
guarantees in order to achieve desired application quality. Baséuisprihe
concept of Quality of Service (QoS) is introduced. QoS is noyrsp#cified by
a set of parameters, for example bit rate, error rate, dethgelay jitter. One or
more values might be associated with each QoS parameter. x&ople, an
application may specify bit rate in a range of 100 — 150 kbps and delay bound
100 ms.

Steinmetz and Nahrstedt [26] divides QoS parameters into tHfesedt
categories, i.e.:

» Application QoS Application QoS parameters describe requirements for
application services, such as media quality and media relations.

 System QaS System QoS parameters describe requirements on the
communication services and operating systems, such as throughput, delay,
response time, rate, etc.

* Network QoS Network QoS parameters describe requirements on the
network services, such as latency, bandwidth, delay jitter, etc.

The simplest QoS model is as follows, an application speciBe®atS
requirements, which are submitted to the system. The systenmd®es whether
it is able to meet the requirements. If yes, it accépt application and allocates
the necessary resources so that the requirements is satiéfietlas insufficient
resources, the system may reject or negotiate the apphchyi suggesting a
lower QoS requirements.

2.7 Summary

This chapter gives an overview of some areas in distributdtdnmedia
systems which is used in this thesis. The first discussiors gome important
terminologies, followed by some applications of distributed multimsgistems
as well as multimedia compression. The next discussion is abwutrke and
networking protocol. The last discussion gives a brief overvieWQudlity of
Service.

Chapter 3

Java-based Middleware

This chapter introduces the concept of middleware in distributeensgst
It will only focus on Java-based middleware because the implatr@niof this
thesis uses Java platform. There are two middleware modelssksl here, Java
RMI (Remote Method Invocatipnwhich is Java-version of the RP&gmote
Procedure Call, and Jini, which is a service discovery protocol built on the top of
RMI.

3.1 Introduction to Middleware

The most common way to make communication between distributed
applications is by using operations on sockets. The basic pringipbeplicitly
exchanging messages using send and receive command of the socletisnes.

The message itself can be encoded in a binary or text formexgatple, a client
may issue a REQUEST command to a server using TCP protocol. The server then
sends back RESPOND command to the client using the same protocol.

In general, sockets are flexible and sufficient for most comeations,
but there is no distribution transparency, in this case locationpasxy.
Furthermore the design of the socket protocols is cumbersome and error-prone.

Many distributed systems introduce an additional layer, caliedleware
to overcome this problem. The purpose of middleware is to provide t
distribution transparency and hide the heterogeneity of the underlyitigrpla
[32]. The middleware layer sits in the middle between appbicsatiand the
network operating systems, as illustrated in Figure 3-1.

Chapter 3: Java-based Middleware 14

Application Al | | A2
Presentation]
Middleware
Session
Transport Transport
Network Network Operating
Data Link Data Link System
Physical Physical

Figure 3-1 Architecture of a distributed system as middleware (courtesy of

Rothermel, 2001).

3.1.1 Distribution Transparency

According to Rothermel [24], every distributed systems provides

distribution transparency. There are several types of distibutansparency,

i.e.:

3.1.2

Access transparengcjocal and remote resources are accessed in the same
way. This thesis supports access transparency because JMF,isvhich
discussed in Appendix A, provides the same way to access mediin stre
from local or remote location.

Location transparencylocation of objects is not known to the users. This
thesis supports location transparency by using naming serviceniof Ji
which hides the actual location of a service.

Replication transparengythe number of copies of an object is not known
to the users. This thesis does not support replication transparendy, but
might be added in the future. For example, the users may acsessca
media by using a familiar name, such as “CNN Live”, and thisenam
points to more than one URL.

Migration transparency objects can migrate without affecting
applications. This thesis supports migration transparency because a
transcoder service might be moved to another computer. The users a
still able to find it using service discovery protocol of Jini.

Fragmentation transpareng¢yobjects are accessed without knowledge
about any possible fragmentation. This thesis does not support
fragmentation transparency.

Middleware Models
Most middleware is based on some models for describing distributebn an

communication. Tanenbaum outlines some of middleware models, i.e.

RPC (Remote Procedure Calls) This model hides network
communication by allowing a process to call a procedure located on a

Chapter 3: Java-based Middleware 15

3.1.3

remote machine. It appears as if the procedure call is exdousdly, the
calling process is unaware of the fact that communication nletia&es
place. The examples of RPC are Sun RPC and Java RMI.

Distributed Objects InvocationsThe idea of this model comes from RPC
that if procedure calls could cross machine boundaries, it should also be
possible to invoke objects located on remote machines. The esdence
distributed objects is that an object implements an interfatehttles all
implementation details from the users. The examples of digdlject
invocations are CORBACQommon Object Request Broker Architecture
and Microsoft's DCOM Distributed Component Object Modglel

Messaging The communication is done by passing messages between
machines asynchronously. The example of messaging is SSARIé
Object Access Protocplwhich develops an RPC-like model based on
XML.

Middleware Services
Tanenbaum gives some examples of services common to middleware

systems, i.e.:

Communication Facilities The middleware provides communication
facilities that hides the low-level message passing thromgmetworks.
This thesis uses Java RMI for communication facilities wisatiscussed
later.

Naming Name services allow entities to be shared and looked up as in
directories. The examples of name services are DD@n&in Name
Systepand X.500. This thesis uses Jini technology which is based on a
light version of X.500 name service, called LDARght Directory Access
Protocol).

Persistence storageSuch service offers special facilities for storage, the
simplest form is distributed file systems and the more addafwwen has
integrated database. This thesis does not use persistence storage.

Distributed Transactions Such service allows multiple read and write
operations to occur atomically. This thesis does not use distributed
transactions.

3.2 Java RMI

Java RMI is the implementation of RPC in Java platform. Hewetere

is a significant difference between RMI and RPC, RMI dedth methods of
distributed objects, instead of procedures. That's why Java RMalso
categorized as distributed object invocations by some people (Coulouris, [6]).

Java RMI (or in more generic term, RPC) itself is a meishathat allows

a machine to call another procedure located on a remote madhimen calling
such procedure, the parameters are transparently shipped to tite reacthine,
and then after the procedure is executed, the result is shipped backabethelt

Chapter 3: Java-based Middleware 16

appears as if the procedure call was executed locally. FsgArehows a basic
principle of RPC between a client and server program.

wait for result

client ee—- oo \
call remote return from
procedure call
request reply
Server = =--=-ceeeee e ...
call local procedure — % time

and return result

Figure 3-2 Principle of RPC between a client and server program (courtesy of
Tanenbaum and van Steen, 2002).

3.2.1 RPC Failure Semantics

Rothermel [24] outlines four types of RPC failure semantics, which
describes what happens if a failure occurs, i.e.:

* Maybe it means a request is executed by best-effort method.

» At-least-oncea request is executed at least once. Java RMI usegpais t
of RPC failure semantic.

» At-most-oncea request is executed at most once.
» Exactly-oncea request can only be executed exactly once.

3.3 Jdini

The second Java-based middleware discussed in this chapter ifgdini.
explained above, Jini is used in this thesis for service disg@vetocol, that is to
find a service of transcoder.

As described by Jini datasheet [30], Jini network technology provides a
simple infrastructure for delivering services in a networiai téchnology offers
“network plug and work” mechanism, where a service can be conntxtad
network, announce its presence, and the clients that want to usevice san
discover and use it. Although at first, Jini was intended forcéesiscovery, like
printer, nowadays Jini is also intended for discovery of softwaéces and even
Web services.

Application Service

Jini Technology

Java Technology

Operating System

Network Transport

Figure 3-3 The Jini architecture (courtesy of Sun Microsystems, 2001).

Chapter 3: Java-based Middleware 17

One of the design goal of Jini is to provide a system thatyealiws
clients to look up new services as they become available [32].prdivides a
specialized lookup service to gain this purpose. A service regjigself by
providing a set of (attribute, value)-pairs that describe, for nostawhat the
service has to offer, and where it can be contacted. A cliarlbok& for a service
by providing a template to the lookup service. The lookup service ridtarns
information on matching services.

As shown in Figure 3-3, the Jini technology is built on Java technology
and utilizing its object oriented features. It is entirelytten in Java and it uses
the mechanisms of RMI.

3.3.1 Architecture of Jini

The architecture of Jini consists of three main componsetsice lookup
serviceandclient A service, which is also calledsarvice providerprovides a
service to the network. A lookup service garvice locatoy, acts as a broker or
locator between clients and services. A client basicallg component which
makes use of a service.

The heart of Jini is a trio protocol, calletiscovery lookup and join.
Discovery occurs when a service or client is looking for a lookmace. Lookup
occurs when a client needs to use a service. Join occurs sbence is plugged
to the network.

When a new service provider is added to a network, it has to find the
lookup service to register its service. After the lookupviser has been
discovered, a service provider registers its service objatits service attributes
with the lookup service. The service object contains Java pnogirg language
interface for the service. For example, for printer, theriace may contains print
method. The service attributes contains additional descriptfeemation, for

example a printer may has a certain speed, either “fast”, “medium”aw™sl
Discover
@ Network service discovers
available lookup services (LUS)

@ Join
@ Network service sends
Network R Lookup service proxy to LUS

service service
Service
proxy

Network
client

Discover
Network client discovers
available LUS

Lookup
@ Network client sends request
to LUS to find desired services

Receive
LUS sends registered service

()

proxy to network client

) CE

Network client interacts directly with
network service via service proxy

Figure 3-4 A flow diagram of Jini technology (courtesy of Sun Microsystems,
2001).

Chapter 3: Java-based Middleware 18

Now the service is ready to be used. A client can ask arcedevice by
sending request to the lookup service. The client locates the loekupesusing
discovery protocol. The client locates a service by sendmdyge, that is
interface written in Java programming language, and optionally watime
descriptive attributes. The service object is then loaded into the client.

The final stage is to use the service. The clieteracts with a service via
a set of interfaces, which are implemented as RMI refesetwthe remote object
that implements the service. These interfaces define af se¢thods which can
be used to interface with the service.

3.4 Summary

This chapter discusses about middleware in distributed systemsiadigpe
Java-based middleware. There are two main discussion in thtechRMI,
which is Java version of RPC, and Jini, which is a servicedsyg protocol for
Java.

Chapter 4

Transcoding Infrastructure

This chapter discusses the common infrastructure of transcodimgnsyst
It starts with an example scenario where we find problems sirilgited
multimedia systems. The discussion is followed by some altezadb solve the
problem and the transcoding infrastructure is introduced here. Anthefehis
chapter, the requirements of the transcoding infrastructure is presented.

4.1 Example Scenario

Before discussing the transcoding infrastructure, | will give >amgple
scenario where the transcoding infrastructure could be fit intoll iBia
businessman working in a big company in Stuttgart. Now he is goinigeto
airport because he has an important meeting in San Francisoadam While
waiting in the airport, Bill opens his notebook and watches the l|ateshess
news from CNBC using WaveLAN in the airport. The news fraNBC, which
has a high-quality resolution, should be transcoded to a lower resolution.

Suddenly he has a video-phone call from his partner in the Unitesk Stat
who is using a desktop PC to make a call. Bill wears his hetxs® a video-
phone using his mobile phone which is connected to a UMTS network. The
quality of the video is not so good because the limitation of UMT®arkt In
this case, the video and audio stream from Bill's partner, waising a good
connection with a good device, should be transcoded so that it can Ilpeittesths
via UMTS network smoothly.

After Bill has arrived in San Francisco, he takes a @xhé hotel. In the
taxi, he finds a computer and monitor embedded in the car. While mtovthg
hotel, he is watching the latest politic news from CNN. The car itself is cmthec
to the wireless network and it supports UMTS network. When watchiag t
video, Bill has experience the quality of the video is changingrakvenes
because the car may change its network to different bandwidthnislodse, the
stream should be adapted according to the car’s network.

Chapter 4: Transcoding Infrastructure 20

4.2 Solution

As explained in Chapter 1 and scenario example in the lasbrsecti
nowadays there are many types of computer devices, such as deslgop PC
notebook PCs, PDAs, mobile phones, which have different capabiliti&sgliimg
computing power and display capabilities. Table 4-1 shows an exafie
differences of capabilities between some typical devices.

Table 4-1 Different capabilities of some typical computer devices.

Client Devices | Processor | RAM Screen Color Speaker
Speed Size (pixels) | Depth

Desktop PC 2 GHz 512 MB 1600 x 1200 32 bit Stereo
Notebook PC 1 GHz 256 MB 1024 x 768 24 bit Stereo
PDA 200 MHz | 32 MB 240 x 320 12 bit Mono
Mobile phone | - -9 101 x 80 8 bit Mono

" not available due to lack of documentation

All of those devices may have different connections to the $eth as
wired LAN or wireless LAN. Furthermore, the users of wireldsvices, such as
notebook PC or mobile phones, might move while they are connecting hethe
They may sit on cars or trains and their networks are morly tikeehange from
time to time. One time, they may be connected to a good netaraitkn another
time, they may enter to a congested network.

Video stream | Audio stream

MPEG-1 MPEG-1/Audio Layer 3
352 x 288, 30 fps 44 kHz, 16 bits, stereo
300 kbps 128 kbps

Desktop PC Notebook PDA Mobile phone

1600 x 1200 pixels 1024 x 768 pixels 320 x 240 pixels 101 x 80 pixels
32 bit colors 24 bit colors 12 bit colors 8 bit colors

stereo speaker stereo speaker mono speaker mono speaker
100 Mbps LAN 11 Mbps WaveLAN 144 kbps GPRS 56 kbps GPRS

Figure 4-1 Heterogeneity of client devices and network connections.

The heterogeneity of devices and their connections leads to therprobl
multimedia communications. As an example, a multimedia seoffees a live

Chapter 4: Transcoding Infrastructure 21

movie in MPEG format. A desktop PC connected to a 100 Mbps LAN may
receive it without any problems, a notebook PC connected to a witdldsmay

have experience watching a non-smooth movie because of its not so good
connection. A PDA perhaps cannot display the movie at all becaudespitezy is

too small. The heterogeneity problem is illustrated in

Figure 4-1.

The mobility of clients also lead to the similar problem. Thents may
change their connections to other networks which may be congested or have lower
bandwidth. In other words, the clients will have difficulties getting QoS gueant
over wireless network because the bandwidth is highly vari@le Currently,
there are some proposal to achieve QoS guarantees over wnetl@esk, such as
adaptive QoS. However, in general, the mobility problems is qoitglex due
to the nature of wireless network.

4.2.1 Solving Heterogeneity and Mobility Problems

As discussed in the last section, there are two main problems,
heterogeneity and mobility. Some people have been working to solve both
problems [2][8][25]. However, as discussed in the last section, ryopibblem
is quite complex and still an open problem nowadays. On the other hand,
heterogeneity problems has been solved by some approaches. In general, there are
two different approaches, server-side approach and network-side approach.

The server-side approach basically provides several diffemedia
formats on the server. It can be implemented by providing dediffexent files
which can be selected by the clients. This is the most commobnaappused
today. For example, CNN.com nowadays offers three different formats,
QuickTime, Real Player and Windows Media Player, and two diffevetwork
connections, Dial-up (28 kbps - 56 kbps) and Broadband (150+ kbps). When a
user want to watch a streaming video from CNN, he should sdlecotmat
supported by his hardware/software and the network connection he is using.

The COMCAR project developed a better solution for the serder-si
approach, calledadaptive mobile application20]. The adaptive mobile
application, which is installed on the client devices, is able lectséhe most
appropriate format. The end user does not need to select the foamaaliy,
instead a smart algorithm will select it. The decisioslfitss based on some
parameters, such as computing power, network bandwidth, available memory,
display capabilities, etc.

The server-side approach has an advantage of easy to implement because it
does not require any additional infrastructures. It simply adds semidormats
on the server and the client selects the most appropriate flmntatmn. However,
this approach also has a disadvantage because each time al@ews\added, it
has to be converted to some other formats and it may take astorade capacity
to save the same media in different formats.

In the network-side approach, there is only one media format on thex ser
and there are some computers on the network, daladcodersthat convert the
streams into different formats on-the-fly.

Chapter 4: Transcoding Infrastructure 22

The advantage of this approach is flexibility because the rseowe only
store multimedia data in a single format. The disadvantage is the innestse
The investment cost is quite high because we have to put someongwters.
However, the transcoders and the server may run on the sammentacheduce
the cost.

This thesis uses the network-side approach to solve the heterogarity
mobility problems. The next section discusses the transcoder whicé main
part of the network-side approach.

4.2.2 Transcoders to Solve Heterogeneity and Mobility Problems

The main task of a transcoder is to transcode the media stiatorthe
appropriate format for the client. This section gives two eXasnpow the
transcoders can solve the heterogeneity and mobility problems.

Server
MPEG/Audio-1 Layer 3
44 kHz, 16 bits, stereo
128 kbps
*j. Transcoder
MPEG/Audio-1 Layer 3 =

44 kHz, 16 bits, mono

64 kbps GSM

13.2 kbps
DVI

8 kHz, 4 bits, mono
32 kbps

Client 1 Client 2 Client 3

Figure 4-2 The architecture of a simple transcoding infrastructure.

Figure 4-2 shows the architecture of a simple transcoding tinfcasre.
The media on the server which requires 128 kbps bandwidth is transcaoled int
three different formats for three different clients withethdifferent connections.
The transcoded streams have lower bandwidth than the original ceeires 64
kbps, 32 kbps and 13.2 kbps respectively. Furthermore, the DVI and GSM
require less computing power on the processor, compared to MPEG/ATidko.
sound quality of the transcoded streams of course are worse than the original ones.
However, the clients would prefer it rather than listening skippesic or news
due to the lack of the bandwidths.

Chapter 4: Transcoding Infrastructure 23

Another scenario, an end user is listening for an audio streanmioving
car. While moving, he may change the connection to another network tdmsc
lower bandwidth. In this case, the client can request the tramdoodeliver the
stream in lower bit rate. Figure 4-3 shows one example ofst@rario. The
client is moving from a GPRS network with 114 kbps to a new netwalk56
kbps. It means that it cannot receive the 64 kbps streams any sootke
transcoder should send another format of 32 kbps.

Server

MPEG/Audio-1 Layer 3
44 kHz, 16 bit, stereo
128 kbps

Transcoder
MPEG/Audio-1 Layer 3 DVI
44 kHz, 16 bit, mono 8 kHz, 4 bit, mono
64 kbps 32 kbps

/

Client

GPRS network GPRS network
114 kbps 56 kbps

Figure 4-3 Transcoders for mobile clients.

The introduction of transcoders in the network offers another adeantag
that is the ability to share load between transcoders. The concept is véay ®imi
the repeaters in TV broadcast. Unfortunately, this advamagde gained only
in certain situations. The first situation is that the mestreams should be
conversational or distributed streams, not on-demand streams. Téwd sec
situation is the server, transcoder, and client are not located on the sdime LA

As an example, suppose a server in the United States, offering
MPEG/Audio media 128 kbps stream, is connected to a network with a 1.554
Mbps network. The maximum number of individual users served by tlerse
simultaneously is 1554 / 128 = 12 users. Now we introduce two transcéaler
example in Europe and Asia, each of them is connected to a 1.554nktiamsk.

The users from these two continents can receive the strieam the transcoders,
instead of the server. The situation is shown in Figure 4-he mMaximum

Chapter 4: Transcoding Infrastructure 24

number of users in this infrastructure now is 34 users (= 10 + 12, indBad of
12 users.

Server
United States
1.554 Mbps
128 kbsz
Eﬂ Transcoder Eﬂ Transcoder 10 clients
g Europe g Asia
=~ 1.554 Mbps = 1.554 Mbps
each each
128 kbps 128 kbps
12 clients 12 clients

Figure 4-4 Another advantage of the transcoding infrastructure.

The transcoder may also perform another function as a cache forost
accessed media, so that the transcoder do not need to re-download theedaame m
when another client ask for it. Unfortunately this scenario is applied to the
on-demand applications, not for conversational and distributed applications.

4.2.3 Lookup Service and Service Broker

Basically there are three basic components in the transcoding
infrastructure, server, client, and transcoder. However, these dumponents
alone is not enough because there are some other issues which ghsalded
by other components.

The first issue iservice brokeringhow to select the transcoder for the
client from a given source media. The solution used in this thesiservice
brokering is by introducing a new component, calledvice broker The service
broker acts as magic-boxwhich uses an algorithm to select the most appropriate
transcoder for the client.

The second issue is how the service broker knows what kind of transcoders
are available in the network. A common method to solve this golé by
sending multicast messages to the network to find the transcbiidortunately
this method might not work on some networks because they do not allow
multicast messages. Another method, which is relativelyrbéttby introducing
a directory service The directory service stores information about the
transcoders, such as supported media formats, location, network connection, e
The directory service suitable for this purpose is Lightwelginéctory Access
Protocol (LDAP), which is also a light variant of X-500 naming ®erv In the

Chapter 4: Transcoding Infrastructure 25

next discussion, the directory service used in the transcodingtmitture is
calledlookup service

After the introduction to the two new components, the architecture consists
of five elements, server, transcoder, client, service brokercokdip service as
shown in Figure 4-5.

Server Service
Broker

Transcoder
Lookup
Client Service

Figure 4-5 Architecture of the network service infrastructure for transcoding
multimedia streams.

4.3 Requirements

4.3.1 Server

A server is offering multimedia stream, either in convéosat, retrieval
or distributed applications. There are several protocols whichbeansed to
deliver the stream, for example HTTP, RTP or even FTP.

In order to maintain compatibility with the existing services, gaever is
assumed to be a well-known streams, such as CNN or BBC Radio. This
assumption makes the server does not need to be changed becaugly msem
the existing ones. However it makes some limitations to thasimércture, for
example service broker has no control to the server.

4.3.2 Transcoder

A transcoder is a service which transcodes a stream fronfoomat to
another format which is appropriate for the client. It should tegits service to
the lookup service with some attributes, such as its address, stpfanmats,
location, etc. The detailed attributes is discussed in Chapter 6.

The transcoder is controllable by the client, it means thetatian play,
pause, stop, rewind, or fast forward the stream.

4.3.3 Client

A client is an end user which requests a stream and plays itcli€ne
sends the request to the service broker along with its informatich,as display
capabilities and network connection. The service broker then looksrfor
appropriate transcoder in the lookup service.

Chapter 4: Transcoding Infrastructure 26

4.3.4 Service Broker

The purpose of the service broker is to find the most appropriate
transcoder for the client and then build service chain from tiverser the client.
It finds the transcoder using a directory which is stored in the loo&njcs.
However, the service broker may also perform other tasks, swthat@ncing, or
performing security tasks.

4.3.5 Lookup Service

The lookup service is a directory service which stores infoomatbout
transcoders, for example its address and supported formats. Benéaokup
service is very critical, it is recommended that a netwwak more than one
lookup service. However, it depends on the number of clients and the transcoders.
For small network, one lookup service may be enough.

4.4 Summary

This chapter discusses the problems in distributed multimediansys
heterogeneity of client devices and their networks as weltliaat mobility.
There are two different approaches to solve these problems,-siel@expproach
and network-side approach. The approach used in this thesis is kisiter
approach by having several transcoders on the network to convarmstfem
the server to the appropriate formats for the clients. Theskion of this
chapter covers the requirements for all components of the trangcodi
infrastructure, i.e. server, transcoder, service broker and client.

Chapter 5

Architecture Design

This chapter discusses the architecture design of the networiceserv
infrastructure for transcoding multimedia streams. There tare main
discussions in this chapter, service brokering and service chainBeyver
brokering is the algorithm to find the most appropriate transcadethé client.
Server chaining is the protocol to build path from the setwethe client via
transcoder. The last part of this chapter discusses Niawvecoding where the
number of transcoders between server and client is more than one.

5.1 Service Brokering

The main task of the service broker is to find the appropriate transcoder for
the client. The algorithm to find the transcoder presenteel isebased on the
framework of D. Chen [3]. The basic idea is fadtitranscoders that is capable of
serving the client and then choose blestone.

5.1.1 Finding Source Format and Destination Format

The first thing to do is to find the source format, that is the anftimat
from the server, and the destination format(s), that is nfedmat(s) supported
by the client. Finding the destination formats can be done dasiguse the
client simply tell the service broker which decoders it sugpoFor example, the
client simply tell the service broker, “I have MPEG and H.263 decoders”.

Finding the source format is not as easy as it sounds. The common
method is by sending a request to the server. It simply hsksetver the format
of a given media. Unfortunately, not all servers support thisrieaRTSP server
is one example of a server that is able to handle such requesseriiee broker
can send request to the RTSP server asking the media format it is sending.

Another method is by providing a meta-information about the forrqat.
example, an end user might tell the service broker about the fofrtteg media
he is requesting. This is the easiest way to get the format, but most end users even
do not know anything about media format.

The last method is by providing a database in the service bookier
another computer that contains formats of some well-known address. For

Chapter 5: Architecture Design 28

example, the table may look like: “http://tuba:8080/media/starwars.mov
MPEG-1 352 x 288 pixels 25 fps. The disadvantage of this approach thdhat
administrator of the infrastructure should provide the database.

As a summary, none of the methods above is perfect, but bastwally t
service broker should know the source format of the source media.

5.1.2 Finding Transcoding Format

After the service broker knows the source and destination formbats,
should find which transcoder is able to transcode the source nsediaF{gure
5-1). In some cases, the client does need transcoder at all d¢bausource
matches one of the destination formats.

Source Format |:> 7 |:> Destination Formats
-

Which transcoder?

Figure 5-1 How to find the transcoder?

Now the real problem becomes clear, the service broker hest af |
transcoders with predefined supported source formats and supported idestinat
formats, and it should find one that fits the question mark in Figute 5-
Unfortunately, the solution is not easy because the transcodbt hage been
overloaded or the transcoder does not have enough bandwidth.

In order to find the most appropriate transcoder, the service bro&ds ne
other system information from the client. In general, therettaee different
categories of system information that is needed by the service broker, i.e.:

* Network, such as available bandwidth, delay, jitter, etc.

» Hardware, such as processor speed, processor load, screen resolution,
screen color depth, available memory, number of speakers, etc.

* Software, in this case the decoders, such as MPEG, DVI, H.263, etc.

For simplicity, this thesis uses only a few information. For gtamn
network category, this thesis uses available bandwidth only. hBodware
category, this thesis uses processor speed, screen resolution abdr rafm
speakers. In the future work, any other information might be wosgdin a better
result.

The next step is to build a list of destination formats accordintheo
system information given by the client. After that, the sertdroker builds a list
of transcoding formatsvhich matches the given source format and the destination
formats. Figure 5-2 shows the examples of this list. Supposehiaource
format is MP3, 44 kHz, 16 bit, and 2 channels and the client has MP¥&nd
GSM decoder. Unfortunately, the client cannot receive MPEGnstieectly
because its bandwidth is not enough, it can only receive MP3 22 kHz, drdhit
channels. The client, although has DVI decoder, cannot receive mthtfoof
DVI due to bandwidth limitation. It can only receives DVI 8ZH! bit and 1
channels.

Chapter 5: Architecture Design 29

MP3, 44 kHz, 16 bits P3, 22 kHz, 16 bits, [MP3, 22 kHz, 16 bits,
2 channels 1 channels 1 channels

MP3, 44 kHz, 16 bits,) MP3, 44 kHz, 16 bits DVI, 8 kHz, 4 bits, DVI, 8 kHz, 4 bits,
2 channels 2 channels %:> 1 channels = 1 channels
\ MP3, 44 kHz, 16 bits
2 channels %:> GSM Morno —> GSM Mono
Source Format Transcoding Format Destination Format

Figure 5-2 An example of a list of transcoding formats and destination formats.

The service broker has decided that there are three possiblésfoviieh
can be received the client. Now the service broker should thgldranscoding
formats that transcodes the source format to each destinationt.forimahe
example above, the service broker build three transcoding formats.

There is something missing here, how does the service broker know
whether the client’'s bandwidth is enough or not. Firstly the servioker is
given the estimated available bandwidth of the client. Thereseareral ways to
detect the available bandwidth in a network, for example using afrol
Jacobson calleBathChar[17]. Secondly, the service broker is supposed to know
the bit rate of each format. For example, the bit rate of MP3, 44 kHz, 16 bit, and 2
channels is around 128 kbps. Basically, the service broker has amthabgoria
table to calculate the bit rate of each format. This th&smply uses a table
similar to Table 2-2, but the best method is actually to usegamitaim which is
capable of calculating bit rate for every given media forniatfortunately, | do
not find an algorithm like this, so | simply use a table. Howetes method is
actually also used in QoS Mapping to map a given resource to the desired format.

5.1.3 Assigning Priority to Transcoding Format

The service broker now has to assign priority to each transcoatimgtf
It is needed because one format may have a better quality thathdrs. For
example, an end user would prefer to listen MP3 stream, ratireGBiEl stream
because MP3 stream has much better quality. In this casg,fdfiat would
have a higher priority.

The priority decision in this thesis also based on a given talie. table
itself should be given by a person who is responsible for the netviEah item
in this table is a format and its priority, the first itemthe table has the highest
priority and the last item has the lowest priority. Table ®xdws the priority
table of audio formats. In reality, the table might be much lothger this. Using
this table, the service broker firstly consider MP3, 44 kHz, 16 faites as the
first priority. If the client is not able to receive thsrat, the service broker
consider the second one, MP3, 22.05 kHz, 16 bit, stereo, and so on.

Chapter 5: Architecture Design 30

Table 5-1 Priority table of audio formats in the service broker.

Priority | Codec | Sampling | Bitd Mono/ | Bitrates | Compu-
rates sample | Stereo | (kbps) tation

1 MP3 44100 16 Stereo 128 High

2 MP3 22050 16 Stereo 64 High

3 MP3 44100 16 Mono 64 High

4 DVI 22050 4 Mono 64 Low

5 p-Law | 8000 8 Mono 64 Low

6 DVI 11025 4 Mono 45 Low

7 MP3 22050 16 Mono 32 High

8 DVI 8000 4 Mono 32 Low

9 GSM 8000 8 Mono 13.2 Low

In another case, and end user might only want to receive MP3 stream
because he has a powerful processor and wants to listen a “high-quality” audio. In
this case, although he has DVI decoder for example, he tellsethize broker
that his machine only supports MP3 decoder. Therefore the seraiker lvill
look at MP3 formats and ignore other formats.

The priority table of video formats is quite similar to Tablg, &s shown
in Table 5-2.

Table 5-2 Priority table of video formats in the service broker.

Priority | Codec | Resolution Frameper | Bitrates | Computation
(W x H pixels) | second (kbps)
1 MPEG | 352 x 288 30 300 High
3 H.263 352 x 288 30 150 Low
2 MPEG 352 x 288 15 150 High
4 H.263 352 x 288 15 75 Low
5 MPEG | 176 x 144 30 150 High
6 H.263 176 x 144 30 75 Low
7 MPEG | 176 x 144 15 75 High
8 H.263 176 x 144 15 37.5 Low

The problem becomes quite complicated when the stream cobtaims
video and audio, how to build the transcoding formats. The service braker c
build them using Table 5-1 and Table 5-2, for example the servicerlzelest
the highest priority for video, MPEG, 352 x 288, 30 fps and then seleidib
formats from the highest priority to the lowest one. In other wdadghis video
format, there are combinations of MPEG 352 x 288, 30 fps and MP3 44 kHz, 16

Chapter 5: Architecture Design 31

bit, stereo; MPEG 352 x 288, 30 fps and MP3 22 kHz, 16 bit, stereo; MPEG 352 x
288, 30 fps and MP3 44 kHz, 16 bit, mono, and so on.

Unfortunately this approach is not reasonable because the semkes br
will have too many transcoding formats. Suppose that, the listdid dormats
contains 10 formats and the list of video formats contains 10 forrtiags,
combination of video and audio formats will contain 100 formats. For this reason,
this thesis uses a table of audio and video formats as shown ie %kl
Although this solution is not perfect because not all possible formeds
considered, but it avoids the increasing number of transcoding formats.

Table 5-3 Priority table of audio and video formats in the service broker.

Priority | Format Bit rates Computation
(kbps)

1 MPEG 352 x 288, 30 fps 428 Very high
MP3 44 kHz, 16 bit, stereo

2 H.263 352 x 288, 30 fps 278 Low
MP3 44 kHz, 16 bit, stereo

3 MPEG 352 x 288, 30 fps 364 High
DVI 22 kHz, 4 bit, mono

4 H.263 352 x 288, 30 fps 214 Very low
DVI 22 kHz, 4 bit, mono

5 MPEG 176 x 144, 30 fps 278 Very high
MP3 44 kHz, 16 bit, stereo

6 H.263 176 x 144, 30 fps 140 Low
MP3 22 kHz, 16 bit, stereo

7 MPEG 176 x 144, 30 fps 214 High
DVI 11 kHz, 4 bit, mono

8 H.263 176 x 144, 30 fps 107 Very low
DVI 11 kHz, 4 bit, mono

5.1.4 Cascade Filtering

At this step, the service broker has list of transcoding formakstheir
priorities. For each transcoding format, started with the higpasrity, the
service broker must perforeascade filteringto all transcoders. The goal is of
course the find the “best” transcoder for the client. FiguBesBews the cascade
filtering in more detail.

Chapter 5: Architecture Design 37
ListO List A List B

All transcoders
:> All transcoders that is currently

that supports htranscodlnrg]; .

All available the selected orhave a cacd_e 0

transcoders transcoding format SciL(‘)“t:e me 'j‘

(e.g. 100 transcoders) (e.g. 80 transcoders) (e.g- 10 transcoders)

— 1

List D Idle transcoders
from List B
(e.g. 2 transcoders)

Idle transcoders
from List A

(e.g. 15 transcoders) @
@ Selected

transcoder
Selected

transcoder

Figure 5-3 Cascade filtering to the list of transcoders.

In the beginning, there is List O containing all transcoders imét&ork.
In this example, suppose that there are 100 transcoders in Listsihg the
selected transcoding format, the service broker selectaabédoders which can
transcode from the source format to the selected destinationtforiieey are
stored in a list, calletist A

From List A, the service broker performs a filter again tod fiall
transcoders which is currently transcoding the source media. The @uipibss
filter is to save bandwidth from the server to the clidfdr example, if the user is
asking for CNN video and currently there is a transcoder thaanscoding the
video, that transcoder is a good candidate to be the selected tranddodever,
this purpose can be achieved in conversational and distributed dppb¢aiot in
retrieval applications. For retrieval applications, the queghtrive different, for
example, which transcoders have the cache of the requested. sfrhamesult of
this filter is stored in a list, callddst B.

From List B, the service broker finds all transcoders whicthcapable of
serving a new client. This new list, called List C, canbbét by considering
some QoS parameters which is described in the next section. lt€hediitself is
done by comparing each required QoS parameter with each avaaiSe
parameter. For example, a transcoding format requires QoS pararot 128
kbps bandwidth, 200 MHz processor and 1 MB available memory. Theeservic
broker then should only filter transcoder which has at least 128 &lgpkble
bandwidth, 200 MHz and 1 MB available memory.

From List C, the service broker simply select one transcodiee most
common method to do it is by randomly selecting one transcoder froisthe
Another common method reund-robin but it is quite difficult to be applied here
because there may be more than one service broker in the network.

Chapter 5: Architecture Design 33

In some cases, List C contains no transcoder, it means thaceitie
transcoder right now. What should be done by the service brokeuse toist A
and find all transcoders which is capable of serving a newtclierom this list,
called List D, the service broker simply select one transcoalefomly or by
other methods.

For optimization purpose, List B and List C can be built using aesing|
qguery. It means the service broker asks the transcoder wheikecurrently
transcoding the source mediad is able to serve a new client.

5.1.5 QoS Parameters

There is an unanswered question in cascade filtering algorithm, haw~ doe
the transcoder knows whether it is capable of serving a newt @r not. The
purpose of this query is to get a QoS guarantee so that tm ddiecive a
relatively good quality of stream. Because it deals with QaB8antee, this query
involves several QoS parameters from the client as well asathectder.

As explained in Chapter 2, there are three QoS parameters, iicaapp)
system and network QoS parameters. The application QoS pararsepported
in this thesis are given by the users manually. For examples user wants to
listen high quality audio, he should enable MP3 decoder and disable other
decoders only so that the service broker will consider MP3 ferordy. Another
scenario, when a user need CPU power to do other tasks, it may dibdab@
decoder so that the service broker select formats which nesI€RJ power.
The system QoS parameters which are used by the service brdkele system
information from the operating system, such as processor lodthdeanemory,
etc. The network QoS parameters which are used by the sbroioer includes
network characteristics, such as bandwidth, latency, jitter, etc.

When the service broker receive request from a client fdrears, the
client actually also gives some QoS parameters. Sirae teenscoder also has
some QoS parameters, the service broker simply matches tineepansgfrom the
client and the transcoder. If the QoS parameters of a tramseatisfy the
requested QoS parameters from the client, it means the ddemsis capable of
serving the client.

5.1.6 Flow Chart

Figure 5-4 shows the overall flow chart of service brokering. ati i
summarizes the service brokering steps which | explain above.

Chapter 5: Architecture Design

34

Start

A

Finds the source format.
Builds a list of destination formats and
a list of transcoding formats.

A

Pick up one transcoding format
according to the priority table.

' If no more format to be picked up,
then give up.
A
Build a list of transcoders that supports
-0 the selected transcoding format.

This list is called List A.

How many

Ask the transcoder whether

transcoders
in List A?

>1
v

From List A, build a list of transcoders
that is currently transcoding
or have the cache of source media.
This list is called List B.

How many

> it is able to serve a new client
using the given QoS parameters.

Is transcoder
able?

Ask the transcoder whether
» it is able to serve a new client

transcoders
in List B?

>1

v

From List B, build a list of transcoders
that is capable of serving a new client
using the given QoS parameters.
This list is called List C.

How many
transcoders
in List C?

using the given QoS parameters.

Is transcoder
able?

(continued in the next page)

Chapter 5: Architecture Design 35

From List A, build a list of transcoder
which is capable of serving a new client
using the given QoS parameters. ‘ Activate the transcoder.
This list is called List D.

How many
transcoders
in List D?

Select one transcoder and
then activate it.
y
Finish

Figure 5-4 Flowchart of service brokering.

5.2 Service Chaining

As explained in the beginning of this chapter, service chaininpds
protocol to build path from the server to the client via transcodlbe basic idea
is the service broker searches a directory in the lookup setwicgelect a
transcoder and then gives this information back to the client. [dw@ then
could listen to the media stream from the selected transcoder. In gdreahite
three protocols in service chaining i.e.:

* Finding lookup service.
» Service registration.
* Requesting transcoder service.

5.2.1 Finding Lookup Service

When a component, either transcoder, service broker or clientachexit
on a network, it has to find the lookup service. In general, there are three different
methods which can be used to find the lookup service on a network, i.e.:

* Multicast request
* Multicast announcement
* Unicast discovery

Multicast requests done by sending a multicast message to a well-known
address on a network and waits until the lookup service respond taulticddt
request uses a UDP protocol while the respond from the lookup sesegsea
TCP protocol. Since UDP packet may lost, the first multicagtiest may not

Chapter 5: Architecture Design 36

reach the lookup service. The most common method to solve this prabbgm i
sending several multicast requests, for example sending 7 mulgqasists every
5 seconds. The multicast request has a disadvantage becauseetsorgs do
not allow multicast messages or no lookup service is availabillee multicast
range.

Multicast announcemens$ done by sending multicast messages from the
lookup service to a well-known address. The client that listetisiganulticast
message may add the lookup service to its list so that ibearsed in the future.
The multicast announcement is sent using UDP protocol periodicailgxample
every 120 seconds. The disadvantage of multicast announcementas it
the multicast request. In addition the client may need the lookugedmfore it
receives the announcement, in other words, a new client shouldfowaite
announcement message.

Unicast discoverys done by entering the address of the lookup service
manually. It can be entered using a dialog box, like setting a pnoayWeb
browser, or using a configuration file. This method works on allscasgike the
other two methods. The disadvantage is that the client must keoadthiess of
the lookup service, if the client is moving to another network, ittrkosw the
address of the new lookup service.

The best method to find lookup service is by combining the three methods
above. The client is given well-known addresses of some lookugegniif they
are unreachable, the client can send multicast message to fiad lobkup
services. In the mean time, the client should listen for cagtiannouncement in
case there is a new lookup service installed on the network.

Since lookup service is very important, usually there are more dha
lookup services on a network to prevent single point of failure. Whergeve
lookup service crashes, the client can use another lookup service.

5.2.2 Service Registration

After the lookup service is known, the transcoder and the servicerbroke
have to register with it. The registration of service brakeuite simple because
it does not require any attributes. It is done by sending a TCketp@ a lookup
service. If the lookup service is successfully added the setwids directory, it
will return a uniqueservice ID The generation of a unique service ID is
discussed later. If the registration fails, the service darckiould find another
lookup service and register with it.

The service ID is then used by the service broker to registerother
lookup services. When a new lookup service is added to the netweldertice
broker should use the same service ID to register with it.

5.2.2.1 Registration Protocol for Service Broker

Figure 5-5 shows the example of service broker registration using
multicast request. There are two lookup services and one sénaker here.
Firstly, the service broker sends multicast request to find lookwmices. The
two lookup services respond it with multicast respond. In this thseservice

Chapter 5: Architecture Design 37

broker simply selects the first respond from lookup service 1 andteegts
service with it. The lookup service 1 adds the service briokés database and
then returns a service ID. The service ID is used to ezgigth another lookup
service, that is lookup service 2.

Service Broker Lookup Service 1 Lookup Service 2

Multicast request— ||

-]
—

Multicast response
P—

.
| Serviceregistration |

Service ID—— |

Multicast response

-———

| Service registration]

v ¢ v

Time

Figure 5-5 Registration of service broker using multicast request.

Suppose that the lookup service 1 crashes after sending multicast response
The service registration will fail because the lookup sengic® longer available.
The service broker then use another lookup service to register its service.

Another scenario, suppose that lookup service 1 crashes after sending the
service ID. In this case the service broker has got &sd® so that the service
broker can use it to register with another lookup service.

Service Broker Lookup Service 1 Lookup Service 2

Service registratio

4//Service ID

I

Multicast announcement

.
| Service registration— |

A\ ¢ v

Time

Figure 5-6 Registration of service broker using multicast announcement and
unicast discovery.

Figure 5-6 shows an example of registration of service brokeg usi
multicast announcement and unicast discovery. Firstly, there yslookup
service 1 and the service broker finds it using unicast discovggh is given by
the user. The service broker registers with lookup service leaacggervice ID.
After some time, a new lookup service, that is lookup service &jdsd to the
network. It sends multicast announcement so that every hosts metiverk

Chapter 5: Architecture Design 38

know there is a new lookup service. The service broker then usantieesgrvice
ID to register its service with lookup service 2.

The service broker is registered with a lookup service fomédd time
only. In other words, the service broker leases a servicadm the lookup
service. After the leasing time is expired (or almost rex{)j the service broker
should renew its registration or the lookup service will assumaehace is no
longer available.

5.2.2.2 Registration Protocol for Transcoder

The registration protocol basically is very similar to tlegistration of
service broker. The only difference is that the transcodgstration needs some
additional attributes, for instance supported source media formats, t®agppor
destination formats, network bandwidth and location. The other procestes i
same with the registration of service broker. A serviceganfscoder is also given
a unique service ID which is leased for a limited time. Thascoder should
renew it when the leasing time is almost expired.

5.2.2.3 Service ID Generator

A unique service ID is important to identify a service, eitin@nscoder or
service broker. It also prevents a duplicate registration aromkyp services.
There are many ways to generate a unique service ID, suabirgs counter,
timestamp or random number.

In this thesis, the service ID is a 128 bits (or 16 bytes) numbih is a
combination otimestamprandom numbeandhost address The service ID uses
these combinations to guarantee that the possibility of twocgesriiave the same
ID is almost zero. The service ID uses combination of tamegtand random
number, instead of counter because sometimes we need to know whenaiserv
registered or when a service is going to be expired. Figurehbws the diagram
of the service ID.

15 8 7 0
time Iowi tm.e_ t'.m.e— CIqu— node
. — mid hi seq . ' .
version variant

Figure 5-7 A time diagram of a service ID.

The time_low, time_mid and time_hi field are set to the Jeagtdle and
most significant bits respectively of 60 bit timestamp measured in 100 nanosecond
units since midnight, October 15, 1582 UTC. The version field indidates
version, whether Ox1 or Ox4. The variant field must be set 0x02. dblke skeq
field is set a 14 bits random number. The node is set to the hardddress of
the client.

Chapter 5: Architecture Design 39

5.2.3 Requesting Transcoder Service

At this step, the service broker has registered its cera the lookup
service and all transcoders has registered their sersocéee lookup service as
well. When a client request for a media stream, the transcadirsgstructure
should be able to find the appropriate transcoder, using service brokering
algorithm, and then request the transcoder to start transcoding ré@n st
Basically there are two approaches which can be used to reqtrestseoder
service, i.e.:

* Client-initiated request.
» Server-initiated request.

5.2.3.1 Client-initiated Request

Client-initiated service request means that the client fedia request to
the service broker to find the transcoder. Figure 5-8 shows bedmrstreams
and control messages between components of the transcoding infuastruthe
number on each arrow indicates the step of service chaining protoasl,
discussed later.

—» media streams
Server
control r_nessages
‘ T for media streams
10 9,13 control messages
— > toestablisha
i connection
Transcoder
A \
6 7
\ v
1 12 Service 4 ’
Broker 5
o Lookup
3 8 Service
.
l »
Client
> 2

Figure 5-8 Stream and control flow of the client-initiated request.

The media stream flows from the server to the transcoder,ewhes
transcoded to another format, and then to the client. The conésdages is
divided into two types. The first type is control messages tabksh a
connection from the server to the client via transcoder. Tlonddygpe is control
messages to control the media, such as play, pause, rewind and fast forward.

Chapter 5: Architecture Design 40

Since it is client-initiated request, the client should askstreice broker
to find the most appropriate transcoder. The service brokerdtselbe found by
sending a request to the lookup service. After the client recéhes service
broker address, it sends information about requested media streell s
client’'s capabilities, such as processor type, monitor resolutionnataork
connection, to the service broker. The service brokering algorithm is performed in
this step.

After the transcoder has been found, the service broker then sends a
request to the transcoder to send the transcoded stream to the clibat
transcoder itself request the original media stream from the server anddatasc
a transcoder session to transcode it. Along with it, the wdescsends
information, which contains IP address and port number, back to the service
broker. The service broker sends this information to the clietitagahe client
can receive the stream.

The explanation of each arrow in Figure 5-8 is as follows:
The client asks the lookup service for a service broker.
The service broker address is returned to the client.
The client asks the service broker to find one or more transcoder.

The service broker asks the lookup service a list of transcodéch may be
appropriate for the client.

5. The lookup service returns a list of transcoders. The senagerthen select
one which will serve the client using service brokering algorithm.

6. The service broker sends a request to the selected transcodad ta svedia
stream.

7. The transcoder returns transcoder session address to the service broker.
8. The service broker returns transcoder session address to the client.

9. The transcoder asks the server to send a media stream to it.

10.The server starts sending the stream.

11.The transcoder transcodes the stream and then transmits it to the client.

12.The client control the transcoder to play, stop, pause, rewind ofofasird
the stream.

13. The transcoder forward the control from the client to the server.

There is a note in step 12 and 13, some streams, such as coowal st
distributed applications, do not allow controls, such as pause or fastréor For
example a live football video cannot be fast forwarded becaustovwet know
the future. In this case, the client is not be able to controtrs@ns. It may send
a control message to the transcoder but the transcoder will do nothing.

The service broker address might be cached in the client in toder
improve performance. Next time, when a client requests ansiifegam, step 1
and 2 can be eliminated, and the client can send the request divdbigyservice
broker in step 3. The same thing also happens in the service,btokay caches

A wnNpRE

Chapter 5: Architecture Design 41

the list of transcoders. When another client request the sesaensand the same
format, it looks in its cache first.

The complete time diagram for a client-initiated request for a medanstre
is shown in Figure 5-6.

Client Lookup Service Service Broker Transcoder Server

Find service broker_|

Service broker |
4— address

| ———Find transcoder — |

Find transcoder |
I Transcoder
address(es) >
Service

brokering

| Addclient |

Transcoder
[¢—session address
—

Transcoder Request stream__|

<« session address

- le———Stream

Stream

e
-]

Contro——|

Control—

v v v v v

Time

Figure 5-9 Time diagram of client-initiated request for multimedia streams.

When a client does not want to receive the stream any longgrould
send a message to the transcoder. The transcoder then send stagen@she
server to stop the transmission. If the client does not sendnéssage, the
transcoder will always send the stream even if the clienbidistening. It will
create garbage of streams. In some situation, garbageamstmay exist in the
network, for example the client crashes before sending stop messape
transcoder. The elimination of this garbage needs another pratadolis
discussed later.

5.2.4 Server-initiated Request

Service-initiated request means that request to the servaerbis
initiated by the server. Figure 5-8 shows media streams @midot messages
between components of the service-initiated request.

Chapter 5: Architecture Design 42

2 »
Server
> 3
~ §
4 9
v | Lookup
; ——5—» .
Service Service
11 14
Broker 6
\ $
7 8
110 il |
Transcoder
‘ T —» media streams
12 13 , connohﬁessages
i ‘ for media streams
' control messages
Client — > to establish a

connection

Figure 5-10 Architecture of the server-initiated service chaining.

The protocol is quite different from the client-initiated resfjubecause
here the client does not need to know about the service broker.ply Semds a
request to the server and the server returns back the transdddessain which
the client should listen for the media stream.

Firstly, the client send a request to the server for a méaians. The
client has to give information about its capabilities, such asepsoc load,
available memory, network bandwidth, etc. The server then should find the
service broker in order to find the appropriate transcoder. If tlversdoes not
know the address of the service broker yet, it has to send requbst lookup
service.

After the server has the address of the service broker, it seggsage to
the service broker. The service broker, using the directotyeiiobkup service,
asks a list of transcoders and perform service brokering on this list.

If the service broker find one appropriate transcoder, it send reiguibst
transcoder to create a new transcoder session. The transcsslen seddress
contains the address and port number on the receiver side, terstemm from
the server, and on the sender side, to send the transcoded streani¢atthd lze
transcoder session address is sent back to the server. Theuses/éhe address
on the receiver side to start sending the stream and sends the address on the sender
side to the client.

The client, after receiving the transcoder session address, opens connection
to the given address and port number and listens for the incoméagnst After
this step, the client should be able to receive the transcodeanstréike the

Chapter 5: Architecture Design 43

client-initiated service, the client can control the stream, but it depends typé¢he
of the stream.

When a client does not want to receive the stream any longgrould
send a message to the server. The server then sends the ssagem® the
transcoder. Alternatively, the client can send stop messape teanscoder, and
then the transcoder sends the stop message to the server.

The explanation of each arrow in Figure 5-10 is as follows:
The client asks the server for a media stream.
The server asks the lookup service for a service broker address.
The service broker address is returned to the server.
The server asks the service broker to find a transcoder.

The service broker asks the lookup service a list of transcodéch may be
appropriate for the client.

6. The lookup service returns a list of transcoders. The senogerihen select
one which will serve the client using service brokering algorithm.

7. The service broker sends a request to the selected transcoded ta svedia
stream.

8. The transcoder returns transcoder session address to the service broker.
9. The service broker returns transcoder session address to the server.
10.The server sends the transcoder session address to the client.

11.The server starts sending the stream.

12.The transcoder transcodes the stream and then transmits it to the client.

13.The client control the transcoder to play, stop, pause, rewind ofofasird
the stream.

14. The transcoder forward the control from the client to the server.

The complete time diagram for a server-initiated request fonedia
stream is shown in Figure 5-6.

a s wnhPE

Chapter 5: Architecture Design 44

Client Transcoder Service Broker Lookup Service Server

|
Request stream——-— |

)

Service broker
l«— address

I Service broker
address ¥

. —Find transcoder——— |

Find transcoder\>

Transcoder___——
[«— address(es)
Service
brokering

E—
‘/Add client

I Transcoder

sessionaddress—»—— Transcoder
session address ¥

Transcoder

l«———— | session address

e Stream——
e Stream——— |

Control\,\

Control

\4 \4 \4 \4 A 4
Time

Figure5-11 Time diagram of server-initiated request for multimedia streams.

5.2.4.1 Comparison of Client-initiated and Server-initiated Request

The client-initiated and server initiated request have adgestand
disadvantages. The advantage of client-initiated request ihthaerver does not
need to be replaced. It can be any type of well-known servets,asuéiTTP
server, RTP server or RTSP server. In server-initisggdast, the server must be
a “new” server because it has to know the availability of the service broker.

The advantage of server-initiated request is that requesttheralient is
quite simple, thus the client becomes thin. The client simggjuest to the server
and then the server returns back the address of the transcoder hahvehadient
should receive the stream. The client even does not need to knowsabocg
broker nor lookup service. In the next discussion, | will focus only mmtel
initiated request.

5.2.5 Streams Garbage

In reality, the client may crash while receiving a stterom the
transcoder. If this happens, the transcoder will always transcoaengtteam
because it does not receive stop message from the clienin &\tient comes up
from the crash and asks for the same stream, the service brokeel®e another
transcoder. This scenario creates streams garbage which wenesessary
packets to the network.

Chapter 5: Architecture Design 45

There are two approaches which can be used to eliminate garbage of
stream, i.e.:

* The transcoder always sends a ping message to each ckeytirgerval
of time, for example every 30 seconds. If a client does not respdhd to
ping message for a given interval, for example 120 seconds, theoans
simply stops the stream.

* The client always sends I'm alive message to the transcuedsyr iaterval
of time, for example every 30 seconds. If the transcoder doesceotae
I'm alive message from any clients in a given interval, deample 120
seconds, it simply stops the stream.

The architecture of this thesis uses the second approach bacaggeres
one message only, rather than two messages.

Figure 5-12 shows the time diagram of elimination of streamisaga.
When a client is receiving a stream, it sends I'm alivesage to the transcoder
periodically. When the client crashes, the transcoder does qeved'm alive
message in a period of time, so that it must stop the stream.

Client Transcoder Server
I
e Stream
¢ —Stream
B
«———— Stream
Stream— |
- ——
I'm alive——
I P Stream— |
</,/Stream
DA Stream— |
Stream—— |
PE—
v timeout
I
crash Stop——vy]
v v
Time

Figure 5-12 Time diagram of elimination of streams garbage.

5.2.6 Transcoder Handover

Transcoder handover allows a client to switch to another transcoder
whenever it needs a different format. For example, a client, which is mowmg fr
a 144 kbps network to a 64 kbps, may need to change from 128 kbps MP3 format
to 64 kbps MP3 format.

The protocol for transcoder handover is quite similar to the setup
transcoder. The only difference is that the client should s®gttkam from the
current transcoder and then send another request to the service brokezst Dihe
the protocol does not need to be changed. Furthermore, in on-demand tfigeam,
new request to the service broker might contain the position of thentstream

Chapter 5: Architecture Design 46

so that the client do not need to play the stream from the beginiimg client
will have experience that the stream is being played continudusglywith
different format.

The only problem with this protocol is that the transcoder setup might need
some time within a few seconds. In other words, the client wiit@a@ paused
stream when the new transcoder is being initialized. A solutitmggroblem is
by waiting the new stream before stopping the current stredfter the new
stream from the new transcoder is arrived, the client sesttgpacommand to the
old transcoder.

5.3 Transcoder Configuration

There are two common methods to put the transcoders, flat and
hierarchical. The flat method is very simple, each transasdgiven a specific
task, to transcode some arbitrary formats to other formats. Cayletirial. [6]
proposed hierarchical transcoding infrastructure as another alernalin this
infrastructure original stream is downgraded on each level of transcoding.

As a simple example, suppose that an administrator is designitga e
service infrastructure for transcoding MP3, 44 kHz, 16 bit, stereixtdifferent
formats, i.e. MP3, 32 kHz, 16 bit, stereo; MP3, 32 kHz, 16 bit, mono; DVI, 22
kHz, 4 bit, mono; DVI, 11 kHz, 4 bit, mono; DVI, 8 kHz, 4 bit, mono and GSM-
Mono. Using the flat infrastructure, the configuration may look like Figure 5-13.

MP3, 44 kHz, 16 bits, stereo
128 kbps

@,

Transcoder 1 Transcoder 2 Transcoder 3

=%

BUAWA

GSM Mono DVI, 8 kHz, MP3, 16 kHz, DVI, 22 kHz DVI, 11 kHz - MP3, 32 kHz,
13.2 kbps 4 bit, mono 16 bit, mono 4 bit, mono 4 bit, mono 16 bit, stereo
32 kbps 32 kbps 64 kbps 45 kbps 64 kbps

77l
|

-

Figure 5-13 Example of flat transcoding infrastructure.

There are three transcoders in this example. All of them sulpiiR81 44
kHz, 16 bit, stereo as their source formats. The same threeduns above can
be configured using hierarchical infrastructure as shown in Figure 5-14.

Chapter 5: Architecture Design 47

@ ‘ MP3, 44 kHz, 16 bit, stereo
128 kbps

Transcoder 1

DVI, 11kHz, = MP3, 32 kHz,
4 bits, mono, 16 bits, stereo
45 kbps : 64 kbps

Transcoder 3

DA

Transcoder 2

-
-

GSM Mono DVI, 8 kHz, MP3, 32 kHz, DVI, 22 kHz,
13.2 kbps 4 bits, mono 16 bits, mono 4 bits, stereo
32 kbps 32 kbps 64 kbps

Figure 5-14 Example of hierarchical transcoding infrastructure.

Each configuration has advantages and disadvantages. The adwdntage
hierarchical infrastructure that it saves a lot of bandwidtls. aA example there
are six users who requests six different formats provided bynthestructures
above. In flat infrastructure, there is a 3 x 128 kbps = 384 kbpstfadfn the
server to this network. In hierarchical infrastructure, there@ 128 kbps traffic
only.

However, the hierarchical infrastructure has a disadvantageubedt
introduces single point of failure. If Transcoder 3 in Figure 5iB&hes, the
whole users is not able to receive stream at all. Inl#testructure, only users
who request GSM and DVI, 8 kHz, 4 bit, mono are not able to receive the stream.

This thesis uses the configuration of flat infrastructure becdbse
implementation of this thesis only allows one-level transcoding.

5.4 N-Level Transcoding

The discussion above assumes there is only one transcoder betiveen se
and client. In reality, we might need more than one transcodendmetizere is no
transcoder that is supporting the transcoding format. In another iscewar
might need hierarchical infrastructure as shown in Figure 5-14.

The solution for N-level transcoding is not simple and | do not impieme
it in this thesis. 1 only discuss how to construct N-level tradisiy theoretically.
The main idea is by creating a directed and weighted graph for the transamodiers
using shortest path algorithm to select the chain. The detédpd is shown in
Figure 5-15. Basically the concept is similar to 1-levehdcading except that
now the algorithm involves a directed and weighted graph.

Chapter 5: Architecture Design 48

(Start)

A
Given server, transcoders and client
] |
. Construct a directed and weighted graph

Service
brokering

J Perform shortest path algorithm

T_ Y
Se'f"'.ce Perform service chaining
chaining

|]

(Finish)
Figure 5-15 Service brokering and service chaining in N-level transcoding.

In the first step, the service broker is given a server, onenane
transcoders, and a client. The purpose of service brokering algasitionfind a
path from the server to the client via transcoders. In order tovacthiis purpose,
the service broker then constructs a directed and weightgdh.grésing this
graph, the path from the server to the client itself can berrdeted by
performing a shortest path algorithm.

The vertices, edges, and cost of the directed and weighted grajtie can
explained as follows:

* Vertices are the server, the transcoders and the client.

» The edges represents the network connecting two vertices \imech
destination format of one vertex matches the source format of eanoth
vertex. In this thesis, it assumed that every transcoders arectamheach
other.

* The costs of the edges are the QoS parameters in the trarsodderthe
network connecting two transcoders.

5.4.1 Constructing Directed Graph

The first thing to do in N-level transcoding is to construct aatied graph
for the transcoders. To make the explanation easier, let astemgei$ four
transcoders in the network as shown in Figure 5-16. The first transddder
supports one source format, A, and three destination formats, B, C amtieG.
second transcoder, T2, supports two source formats, A and B, and three
destination formats, D, E and F. The third transcoder, T3, supportsstiusze
formats, B, C and D, and three destination formats E, F and Y. Thth four
transcoder, T4, supports three source formats, C, E and F, and twatdestin
formats D and Z.

Chapter 5: Architecture Design 49

A A B B C D C E F
B C G D E F E F Y D z

Figure 5-16 Example of four transcoders in a network.

From these four transcoders, the directed graph can be constructed

Firstly, we start from the first transcoder which supportsimsdn format B, C,
and G. We can draw edges to T2 and T3 because these two transcpgers
source formats B. We can also draw other edges to T3 and T4 bduesesdéwo
transcoders support source formats C. Since no transcoder suppodisGonve

do not need to connect G to any other vertices. Next, we move to T2 and look that

T2 supports three destination formats, D, E, and F. We can draw anoe@ge
because this transcoder support source format D. We can alsedgawio T4
because this transcoder support source formats E and F. Thesés siepe
repeatedly until all transcoders are included in the graph. Fg@gshows the
directed graph for these transcoders.

Figure 5-17 Directed graph for the transcoders.

The graph in Figure 5-17 relatively static because the coafigar of
transcoders is not likely to be changed from time to times ight be used for
optimization purpose because each time a client requests fimamsthe graph
does need to be reconstructed. It needs to be reconstructed, fgrieexenen a
new transcoder is added to the network or a transcoder is renfimra the
network.

5.4.2 Optimizing Directed Graph

The directed graph in Figure 5-17 is quite complicated although #nere
only four transcoders. The graph would be more complicated asuthber of

Chapter 5: Architecture Design 50

transcoder increases. Fortunately, the directed graph can be zeqgtimy
reducing the number of edges from one transcoder to another transceor
example, there are two edges from T1 to T3, two edges from T2 &md 4wo
edges from T3 to T4. We do not need more than one edge to cbmoesame
transcoders, so that we “remove” it from the graph. Howeverdaveot really
remove these edges because the format might be requestedidayt anch later
time. For example, if we remove edge F from T2 — T4 and T3 — fidnwa client
requests format F, the graph will not give any result.

The optimization itself can be based on the computing power of the
transcoding process. For example, if the computing power of transcodm@ A
is higher than transcoding A to B, we can remove edge C from T3.tdf the
optimization is performed, the directed graph would be like Figure 5-18.

«—C B EF—»

Figure 5-18 Directed graph after optimization.

5.4.3 Adding Client and Server

Now, a client is requesting a media from the server, for plam format
A. The client itself supports for example two different formatsand Z. The
task of the service broker is to find the path from the seovénd client via the
directed graph in Figure 5-19.

Like 1-level transcoding, the service broker should firstly build the table of
transcoding formats and then give priority to each format. Inctmsse, there are
two transcoding formats only, i.e.& Y and A-> Z. From the priority table, for
example A> Y has higher priority than A Z. The service broker then consider
A - Y and build a new directed graph as shown in Figure 5-19. Thete@re
new vertices in this graph, one vertex represents the client reotea vertex
represents the server.

Chapter 5: Architecture Design 51

Figure 5-19 Directed graph for the transcoders, the server and the client.

Using an algorithm, which is discussed later, the service btb&arfinds
the best path from the server to the client. However, in stases, the service
broker might not be able to do that because there is no end-to-endu@Qa8tge
in all possible paths. In this situation, the service broker caml launbther
directed graph using the second transcoding forma®, Z. Figure 5-20 shows
the directed graph if the transcoding forma®AZ is selected.

Figure 5-20 Another directed graph for the transcoders, the server and the client.

The graph in Figure 5-19 and Figure 5-20 looks very similar, butghtmi
give a different solution to the client. For example, if TBusrloaded, the graph

Chapter 5: Architecture Design 52

in Figure 5-19 would not give any solutions, but the graph in Figi@ Bught
give a solution when T4 is idle.

From the graph in Figure 5-19, the chain can be built from the server to the
client via T1 and T3 (see Figure 5-21a) or via T2 and T3 (sped-b-21b). The
chain can even be built from all transcoders, via T1 - T2 — T4 — Tig
algorithm to determine the best path will be discussed later.

(@) (b)

Figure 5-21 Two possible chains from the server to the client.

5.4.4 Constructing Weighted Graph

Like 1-level transcoding, Quality of Service is an importaotdato select
the transcoders. In N-level transcoding, the QoS parameters daolumed as
the weight of the graph edges. Since the number of QoS paramseatersei than
one but each edge of the graph only allows a single value, the QoSepers can
be represented as a single value using percentage.

As an example, we consider four QoS parameters, i.e. current gopces
load, required memory, required computing power and required bandwidtte If
want to calculate the value of edge between T1 and T3, the prodeadois
calculated on T1 because this transcoder will transcode forntatférmat B.

The required memory is calculated on T1 based on the memoryeedoi
transcode format A to format B. The required computing power ®ulesdd
based on how much computing power is needed to transcode format A to format
B. The required bandwidth is calculated on the network between T13Zata T
send format B. As mentioned above, the estimated bandwidth betweande®
might be calculated using a tool sucHPashChar[17].

In general, the formula to calculate the edge values can béatatt as
follows:

Chapter 5: Architecture Design 53

Value =a.(current processor load) $.(required memory) +
X-(required computing power) #.(required bandwidth)
where
a+B+x+o=1

The value ofa, B, X andd can be given equally, that is 0.25, or non-
equally. For example, if the required bandwidth is the most impddatur, &
can be given 0.4 while, B andy are 0.2 respectively.

Since the value of each edge changes from time to timegviees broker
should periodically send a request to each transcoder to update trevadiges.
Another way to do this is by allowing the transcoders to broadbes current
system information periodically.

Figure 5-22 shows the example of the weighted and directed grapte for t
transcoders above.

Figure 5-22 Weighted and directed graph for the transcoders.

5.4.5 Shortest Path Algorithm

After the directed and weighted graph has been constructed, theapext s
is to perform shortest path algorithm. There are some algoritbniied the
shortest path of a directed and weighted graph, such as breaskfrsh [1],
Dijkstra [1], and Floyd [1]. This thesis uses Dijkstra aldponi because it is
simple and relatively fast. Aho, et. al. [1] discusses Dijkatgarithm in more
detailed.

Since Dijkstra algorithm can only be performed on a static graph, the value
of each weight during service brokering algorithm is assumed toobstant.

Chapter 5: Architecture Design

54

Table 5-4 and Figure 5-23 shows Dijkstra algorithm when it is peefdrom the
directed and weighted graph in Figure 5-22.

Table 5-4 Finding the shortest path using Dijkstra algorithm.

S w | D(T1) | D(T2) | D(T3) | D(T4) | D(C)
0 | {S} - 0.2 05 | % %

1 |{S, T1} T1 |02 035 | 0.3 0.45 | o

2 | {S,T1, T3} T3 | 0.2 0.35 | 0.3 0.45 | 0.65
3 | {S,T1, T3, T2} T2 | 0.2 0.35 | 0.3 0.45| 0.65
4 | {S, T1,T3, T2, T4} T4 | 0.2 035 | 03 0.45| 0.65
5 | {S,T1,T3,T2,T4,C}| C | 0.2 035 | 0.3 0.45| 0.65

0.2 0.5

Figure 5-23 Finding the shortest path using Dijkstra algorithm.
From Table 5-4, the shortest path from the server to the client is 0.65 and it

0.2

0.65

0.15

0.35
0.4

can be built via T1 and T3. Like 1-level transcoding, the final ttondo before
building service chain is to make sure that the selected pathrtthto-end QoS
guarantee. In some cases, the shortest path might not provide ent@ng
guarantee, so the service broker should not build the chain. Once ihgjan,
selected path cannot give QoS guarantee, the service broker shewddatiser

transcoding format which has lower priority.

5.4.6 Flow Chart

Figure 5-24 shows the complete flow chart of service brokering and
service chaining of N-level transcoding. Firstly the serioeker has a list of

Chapter 5: Architecture Design 55

transcoders. From this list, the service broker is able to buirected and
weighted graph of all transcoders. The graph should also be optinfized i
necessary.

When a client request for a stream from a given server etivees broker
is able to build a transcoding format and give priority to eachdb(see section
5.1.2 and 5.1.3 for detailed explanation). From this list, the service lzelet
the highest priority and build a complete directed and weighted graph.greph
contains the server, the client, and all transcoders.

After performing the shortest path algorithm, the service broged &
request to all selected transcoders whether they are ableécaselient or not. If
all transcoders answer the request with “yes”, then the service broker bugoha ch
from the server to the client via them. If one ore more tratescanswer with
“no”, the service broker pick the second highest priority of transcddmngat and
then build another graph. This stages are repeated until no trargdedi
available to be picked up.

Start)

A
Given the transcoders

A
Build a directed and weighted
graph for all transcoders Build a complete directed and
weighted graph which contain
the server, the client and
all transcoders

A
Optimize the graph

4

A Perform shortest path algorithm
Given the server and the client

4

A Ask the selected transcoders
Build a list of transcoding formats whether they_are able to serve the
client or not
A
Pick up one format to
the priority table.
If no format to be picked up, N
then give up

Y
v

Perform service chaining

y
Finish

Figure 5-24 Flow chart of service brokering and service chaining of N-level
transcoding.

Chapter 5: Architecture Design 56

5.4.7 Implementation Problems

The solution of N-level transcoding described above is not easy to be
implemented. Constructing a directed graph may be not too difficulsettivice
broker could simply send request to the lookup service to return alaldea
transcoders. From this list, the service broker then should be atd>tuct a
directed graph for the transcoders. After this, the serviceebghould request
the lookup service periodically to check whether there is a newscioder added
or a transcoder crashes.

The most difficult task is to give weights to each edgehefgraph. The
system information of each transcoder is likely to change from time to tintiee If
service broker is always sending request periodically toaalstoders to ask their
current status, the load of the network will increase significantly.

In N-level transcoding, we also have the same problems witlvel-le
transcoding, that is some QoS parameters are very difficdilbdp such as the
available bandwidth from one host to another host, for example from T1 to T2.

5.5 Summary

This chapter discusses two main issues, service brokering awvideser
chaining. Service brokering it the algorithm to find the most apjaiepr
transcoder for the client. Service chaining is the protocol tal lpath from the
server to the client via transcoder. At the end of this chapte configurations
of transcoders are discussed and one proposal for N-level transewdiraiso
discussed.

Chapter 6

Implementation

This chapter discusses the implementation of the prototype ofborietw
service infrastructure for transcoding multimedia streamgeheral, it is divided
into two main parts. The first part is the platform in whtble prototype is
implemented. The second part, which is the main part of this chdgensses
how the infrastructure is implemented.

6.1 Platform

There are three basic decisions that should be made in this implementation,
i.e. programming language, communication protocol and service digcover
protocol.

6.1.1 Programming Language

The first decision is in which language the prototype should be
implemented. There are two main alternatives that is suifableny purpose,
Java and C++. Java is a platform-independent language andsgdsin many
mobile devices, such as mobile phones. Java also provides a platform
independent multimedia library, called JIMFaya Media Framewojk JMF itself
is not part of J2SE, but is available as an extension to JEZBEhe other hand,
C++ was an industry standard language a few years ago and & pasd
performance. Multimedia library in C++ is platform-independent,example
Windows operating system provides M®éddia Control Interface

In this thesis, | use Java language because it is platformpendence and
it is used in the COMCAR project. Besides that, nowadays teeaegrowth of
computers and devices supporting Java. For example, at the timéimd ¥his
thesis, more than 10 millions Java-enabled mobile phones have beseddlea
the market.

The implementation of this thesis is basedJawa 2 Standard Edition
(J2SE) version 1.3.1. The implementation was tested in Sun Sukisne with
Sun OS 5.8 and Intel machine with Windows XP operating system. Howeve
should be portable to other operating systems, such as Linux asSiede Java
is used, the multimedia library used here is JNkv& Media Framewojk The

Chapter 6: Implementation 58

detailed explanation of JIMF can be found in Appendix A. The implememntati
this thesis is based on JMF version 2.1.1a.

6.1.2 Communication Protocol

The second decision is which communication protocol should be used.
There are several alternatives of communication protocol ia, Jaa. sockets,
RMI, IIOP (Internet Inter-ORB Protocdland SOAP $imple Object Access
Protoco). The implementation of this thesis is based on RMI.

Sockets model is not used in this thesis because as explainedoterCha
the implementation would be cumbersome and error-prone. In fack Rhigh
is used quite extensively in this thesis is based purely on sockets model.

lIOP [23], which is a part of CORBA, is a protocol from OMGbfect
Management Groypwhich allows computer applications to work together over
networks. IIOP allows program from any vendor on almost any computers
operating systems, programming languages and networks can intexopaca
other.

CORBA and IIOP is not used in this thesis because it is \@mnplex and
has too many overheads. In other words, this thesis does not ne&AGDR
IIOP because the prototype implemented here is quite simmsidés that, this
thesis is implemented in one language, Java.

SOAP [34] provides a light-weight protocol and it is used widely
nowadays. SOAP is an XML-based protocol for information exchange in a
decentralized and distributed environment. Unlike RMI and CORBA, SOAP is
based on asynchronous communication, it means SOAP messages are
fundamentally one-way transmission from a sender to a receiver.

SOAP is not used in this thesis for practical reasons only.fifsheeason
is because service brokering and service chaining should be done syndigronous
not asynchronously such as provided by SOAP. Although, SOAP messages c
be designed to allow synchronous communication, but it requires more works.
The second reason is convenience. As an example, if we use RMI, we can register
a transcoder using a simple commanegjisterService(formats) , Where
formats has type dformat[] . TheFormat type itself is a class in JMF that
represents a format of media data. If we use SOAP, wetbadesign an XML
Schema of th&ormat type and then construct an XML Document.

6.1.3 Service Discovery Protocol

The third decision is which service discovery protocol shouldidssl in
this thesis. There are two main alternatives here, i.e. dthidlenP Universal
Plug and Play. Jini is based on Java language, which is appropriate for this
thesis, while UPnP is proposed by Microsoft and it has become arstgretard
technology for connecting devices, PCs and services. Although nowishare
Java implementation of UPnP, this thesis is based on Jini.

In general, the basic concept of UPnP [22] is quite similar to Jin
technology. Unlike Jini, which is based on Java and RMI, UPnP isl lase

Chapter 6: Implementation 59

HTTP and XML. The service announcement and service discovepxpressed
in XML and are communicated via HTTP. For example, a device aceesends
announcement message called ANNOUNCE when it is attached teetiverk.
Another differences between Jini and UPnP is the lookup servicgeUlhi, in
UPNnP, a lookup service, which is called a directory service, ionght A
network can have a directory service or not.

This thesis uses Jini because it is based and written gntirdava and
RMI. Besides that, this thesis uses RMI for communication protocol whiclois als
used in Jini.

6.1.4 Architecture

Figure 6-1 shows the architecture of the transcoder, clientsandce
broker from Java perspective. It is shown here that these composeni®F for
multimedia processing and RMI for communications and Jini for servic
discovery.

The server is not discussed in detail because it only hadtsnadia files
or transmit media streams via HTTP server, RTP serveRDEP server.
Currently there are many HTTP servers available, such ashApand Microsoft
[IS. There are also some RTSP servers, such as QuickTheantstg Server
RealSystem Server.

Transcoder Client Service Broker
Jini
IMF Sl
JVM
Operating System

Figure 6-1 Architecture of transcoder, client and service broker from Java
perspective.

6.2 Transcoder

A transcoder basically has two main functions. The first one, 3igi
service, the transcoder must register its service to the ls@Ewe and maintain
the registration, for example re-register it when the leasedokas been expired.
The second one, a transcoder transcodes streams from the séneeclient. It
means that it has to act as a client for the server and as a server fienthe c

Chapter 6: Implementation 60

As a Jini service, a transcoder has an interfaeaascoderinterface
and its implementation clagsanscoderimpl . The main task of this class is
to receive request from the service broker.

A transcoder may serve several clients, it meansTifzatscoderimpl
class may create several different sessions. Each session servesnonencl the
client may control the transcoder, for example to play, pause, stop, rewind and fast
forward, using RMI. This session is implemented in
TranscoderPlayerinterface and its implementation class
TranscoderPlayerimpl

The registration of transcoder to the service broker and itstenaince is
implemented infranscoderDaemon class. Figure 6-2 shows the architecture
of a transcoder. It is shown here that dnanscoderDaemon may contains
several Transcoderimpl because one computer may contains several
transcoders. Each transcoder itself may serve seveats;lthus it may contain
severallTranscoderPlayerimpl

TranscoderDaemon

Transcoderlnterface =
Transcoderimpl

TranscoderPlayerinterface
TranscoderPlayerimpl

Figure 6-2 Architecture of the transcoder.

6.2.1 Transcoderinterface and Transcoderimpl

As explained in the last sectionfranscoderinterface and
Transcoderimpl receives request from the service broker to serve atclie
The simplest form of the interface is as follows:

public interface Transcoderinterface extends Remote {
public Transcoderldentifier addClient(
String clientAddress,
SourceMedia sourceMedia,
AudioFormat audioFormat,
VideoFormat videoFormat) throws RemoteException;

The interface contains one methaldClient , which receives four
parameters and returisanscoderldentifier . TheclientAddress IS
the address of the client that receives the stream,r difheddress, such as

Chapter 6: Implementation 61

129.69.209.104, or computer name, such as tuba.sdireeMedia , which is
discussed later, contains information about the source media. The
audioFormat andvideoFormat are the formats to which the transcoder
should transcode, in other words, these are the video format and/or @undat f
received by the client.

6.2.1.1 Transcoderldentifier

The Transcoderldentifier stores an identifier of a transcoder
session. It is used by the client to receive the streamtiiertranscoder as well
as to control the transcoder via RMI. There are two basicniafioon in this
class, the session address of the transcoder and the address of the RMI object.

public class Transcoderldentifier implements Serializable {
public SessionAddress sessionAddress;
public String remoteObiject;

}

ThesessionAddress contains the host name, port number and Time to
Live (TTL) of the transcoder. The session address should be rtortiee client
so that the client knows to which address and port it should listen to.

TheremoteObject is the address of the RMI object of the transcoder.
The common syntax ofremoteObject is rmi://hostname/transcoding/
TranscoderRemote/uniquelDIn order to guarantee that each transcoder session
has a unique address, this thesis uses combination of timestampndod ra
number. The timestamp used here is the elapsed millisecondsJameary 1,
1970 00:00:00 GMT. The random number has a range of 10000 — 50000. An
example of the address of an RMI object is shown as follows:

rmi://horn/transcoding/TranscoderRemote/1015767147778-15091

The probability that two sessions have the same addressesost akno
because it is not likely that two clients request at the séme (in one
millisecond range) and the random number generator at that time esothec
same value.

6.2.1.2 SourceMedia
The SourceMedia contains information about the source media, such as
its address and its format. In general, there are three dfsesirce media which
is supported bgourceMedia , i.e.:
e URL, including HTTP, FTP and RTSP. For example,
http://tuba/media/starwars.mov
* RTP session, indicated by a source address and port number. For example,

a multicast stream might have an IP address 224.0.0.1 and port number
22222.

Chapter 6: Implementation 62

* Familiar name, which can be resolved to a URL or RTP sessiam. F
example “Star Wars” may be resolved_to http://tuba/media/atarmov
In this thesis, the real URL or RTP session can be resoleeddriookup-
table, which is given by the administrator of the service broker.

SinceSourceMedia supports three different types of source media, this
class has three constructor for each type.

public class SourceMedia implements Serializable {
public SourceMedia(URL url);
public SourceMedia(String sourceAddress, int sourcePort);
public SourceMedia(String source);

}

The SourceMedia also stores the format of the media, both audio and
video format. This format is needed in the service brokering mdoelsnd the
transcoding format (see section 5.1.1).

6.2.2 TranscoderPlayerinterface and TranscoderPlayerimpl

A TranscoderPlayerinterface andTranscoderPlayerimpl
maintains a transcoder session, it means one instance of
TranscoderPlayerimpl serves one client. For simplicity reason, this thesis

assume that source media contains maximum two tracks, one for addibea
other one for video. In other words, the implementation of this tleasisonly
handle media that contains audio only, video only or audio and video.

Figure 6-3 shows stream flow from the server to the cliert vi
TranscoderPlayerimpl . There are two possible servers in this case, one
possibility is HTTP, FTP and RTSP server, and another possikilRy P server.

For HTTP, FTP and RTSP server, the media can be read by & sing
DataSource . Each track of th®ataSource is read by @&rocessor to be
transcoded into different formats. As explained before, this thesisgme that a
media contains maximum of two tracks, so there are Rnacessor s, i.e.
Processor 1a andProcessor 1b , one for transcoding audio stream and
the other one for transcoding video stream.

RTP server needs different handling, because it should be recgiad b
RTPManager. Since audio and video track of a media might be sent using two
different ports, there are twBTPManagers. The DataSource s of both
RTPManager, i.e. DataSource 0Oa andDataSource Ob , then are read by
Processor 1a andProcessor 1b to be transcoded to other formats.

The task ofProcessor 2a andProcessor 2b is to send the output of
Processor 1a andProcessor 1b to the client. It can be done by using one
RTPManager for each track.

Chapter 6: Implementation 63

HTTP, FTP or RTSP server RTP Session

scoderPlayerimpl

RTP Manager Oa RTP Manager Ob

Y Y
DataSource Oa DataSource Ob

y
DataSource O

A A A A

Processor la Processor 1b
Y y
DataSource la DataSource 1b
Y y
Processor 2a Processor 2b
Y y
DataSource 2a DataSource 2b
Y y
RTP Manager 1la RTP Manager 1b
Y y
Client

Figure 6-3 Stream flow in the transcoder player.

TranscoderPlayerimpl should provide some methods for the client
to control the media. The basic interface ToanscoderPlayerimpl can be
as simple as follows:

public interface TranscoderPlayerinterface extends Remote {
public void play() throws RemoteException;
public void stop() throws RemoteException;
public void pause() throws RemoteException;
public void rewind() throws RemoteException;
public void ff() throws RemoteException;

}

The client can remotely call one of the methods above by usinig Rie
address of RMI object of thélranscoderPlayerimpl is stored in
Transcoderldentifier.remoteObject which is returned by
Transcoderinterface.addClient method. The code below shows how
to callstop method to stop media stream using RMI.

Chapter 6: Implementation 64

try {
TranscoderPlayerinterface transcoder = (TranscoderPlayerinterface)

Naming.lookup(remoteObject);
transcoder.stop();
} catch (Exception ex) {
System.err.printin(ex);

}

6.2.3 TranscoderDaemon

The instance ofranscoderDaemon in one computer can only be one.
The main task offranscoderDaemon s to register service of the transcoders
to the lookup service. AranscoderDaemon in a computer may also maintain
several instance offranscoderimpl s because one computer may have
several transcoders in it. The code below shows the nagst of an instance of
transcoder to the lookup service.

Transcoderlmpl transcoder = new Transcoderimpl(
transcoderName, // name of the transcoder
sourceFormats, // supported source formats
destFormats); // supported destination formats

JoinManager joinManager = new JoinManager(
transcoder, // new instance of the transcoder
attributes, // attributes of the transcoder
transcoder, // listener to the service ID
lookupManager, // the lookup discovery manager
new LeaseRenewalManager());

The registration of a transcoder needs some attributes thagdsbyshe
lookup service to find a service. The attributes might be ndomation,
manufacturer, supported formats, etc. Figure 6-4 shows an exampteboites
of a transcoder. The transcoder which has a name of “tuba.informatik.uni
stuttgart.de-1" is located on Britwiesenstrasse 20-22 on thdldiostand in room
0.113. There are also some attributes about the service, manufasarrar
number, vendor and version. The transcoder supports two source fondats a
three destination formats.

Chapter 6: Implementation 65

Transcoderlimpl

Name.name = "tuba.informatik.uni-stuttgart.de-1"

Location.building = "Brietwiesenstrasse 20-22"
Location.floor = "1"
Location.room = "0.113".

Servicelnfo.manufacturer = "COMCAR Project”
Servicelnfo.serialNumber = "123-456-789"
Servicelnfo.vendor = "University of Stuttgart"
Servicelnfo.version = "1.0"

SourceFormatEntry.sourceFormat =
new AudioFormat(AudioFormat.MPEG_RTP, 44100, 16, 2));

SourceFormatEntry.sourceFormat =
new AudioFormat(AudioFormat.MPEG_RTP, 44100, 16, 1));

DestFormatEntry.destFormat =
new AudioFormat(AudioFormat.DVI_RTP, 22050, 4, 1));

DestFormatEntry.destFormat =
new AudioFormat(AudioFormat.DVI_RTP, 11025, 4, 1));

DestFormatEntry.destFormat =
new AudioFormat(AudioFormat.DVI_RTP, 8000, 4, 1));

Figure 6-4 Attributes of a transcoder.

In general, the transcoder may have as many attributescas, ibut the
mandatory attributes ar&ourceFormatEntry and DestFormatEntry
Both classes are derived frofbstractEntry interface because it is required
by Jini.

public class SourceFormatEntry extends AbstractEntry {
public Format sourceFormat;

}

public class DestFormatEntry extends AbstractEntry {
public Format destFormat;

}

In the design of this attributes, | assume that all formats of
SourceFormatEntry must be able to be transcoded to the formats of
DestFormatEntry . For example, transcoder in Figure 6-4 is able to transcode

MP3, 44 kHz, 16 bit, stereo to three formats, DVI, 22 kHz, 4 bit, moi; DL
kHz, 4 bit, mono; and DVI 8 kHz, 4 bit, mono. It is able to transcode MP3
kHz, 16 bit, mono to three formats as well, DVI, 22 kHz, 4 bit, mono;, DV¥I
kHz, 4 bit, mono; and DVI 8 kHz, 4 bit, mono.

In some cases, a transcoder might support several source féumanst
all of them can be transcoded to all destination formatgur&i6-5 shows one
example of this scenario. In this case, MP3, 44 kHz, 16 bit, stamaot be
transcoded to GSM Mono and DVI, 22 kHz, 4 bit, mono cannot be transcoded to
MP3, 22 kHz, 16 bit, stereo.

Chapter 6: Implementation 66

MP3, 22 kHz,
/> 16 bits, stereo
MP3, 44 kHz,
16 bits, stereo
\ DVI, 8 kHz,
4 bits, mono
DVI, 22 kHz, —
4 bits, mono \
GSM-Mono

Figure 6-5 Not all source formats can be transcoded to the destination formats.
The solution to the case above is simply by creating two ingaotce

Transcoderlmpl . It is allowed in this design because one
TranscoderDaemon may maintain more than one instance of
Transcoderlmpl . Each instance dfranscoderlmpl supports one source
format.

6.3 Service Broker

Basically there are two main functions of a service broker. if$teohe is
very similar to the first functions of the transcoder, tgigeer and maintain its
service to the lookup service. The second one is to find the appedpaiascoder
for the client and to build path from the server to the client.

6.3.1 ServiceBrokerDaemon

Like the transcoder, the service broker also has a daemon, called
ServiceBrokerDaemon . On one computer, there should be only one instance
of ServiceBrokerDaemon . The main task of this class it to register the
service to the lookup service. Unlike the transcoder, an instance of
ServiceBrokerDaemon can only have one instance of
ServiceBrokerimpl (see Figure 6-6). The code below shows the registration
of the service broker to the lookup service.

serviceBroker = new ServiceBrokerlmpl(lookupManager);

JoinManager joinManager = new JoinManager(
serviceBroker, // new instance of the service broker
null, /I no attributes for this service broker
serviceBroker, // listener to the service broker
lookupManager, // the lookup discovery manager
new LeaseRenewalManager());

Chapter 6: Implementation 67

ServiceBrokerDaemon

ServiceBrokerlnterface
ServiceBrokerlmpl

Figure 6-6 Architecture of the service broker.

6.3.2 ServiceBrokerinterface and ServiceBrokerimpl

The main task of the ServiceBrokerinterface and
ServiceBrokerlmpl is to receive a request from the client and then find the
appropriate transcoder. The simplest interface for this purpos@osn as
follows:

public interface ServiceBrokerlnterface extends Remote {
public Transcoderldentifier findTranscoder(
String clientAddress,
SourceMedia sourceMedia,
ClientPreferences clientPreferences,
Systeminfo systeminfo) throws RemoteException;

The interface contains only one method, calfediTranscoder

which receives four parameters and retufnanscoderldentifier . The
clientAddress is the address of the client who request the stream. The
sourceMedia is the address of the media stream requested by the client. The
clientPreferences andsysteminfo are explained below.

6.3.3 ClientPreferences

The ClientPreferences class implemented in this thesis contains all
formats which are supported by the client. However, in the moéxitef, it might
contain other attributes, such as location, so that the clientask “Give me
transcoder in building A’. The code below shows the declaration of
ClientPreferences class.

public class ClientPreferences implements Serializable {
String[] supportedFormat;

}

6.3.4 Systeminfo

The Systeminfo class contains current system information which reflects
QoS parameters of the client, such as processor load, avaitatdevidth, etc. It
is used by the service broker to determine whether the diexiile to receive a
certain format or not. For example, a client with low processeed and high

Chapter 6: Implementation 68

processor load might not be able to receive MPEG streams. oblee below
shows the declaration &ysteminfo class.

public class SystemInfo implements Serializable {
int processorSpeed =0;//in MHz

int processorLoad =0;//in %
int totalMemory =0;//in MB
int availableMemory =0;//in MB
int screenWidth =0; //'in pixels
int screenHeight = 0; //'in pixels
int colorDepth = 0; //'in bits

int numberOfSpeaker = 0; // mono/stereo/surround
int estimatedBandwidth = 0; // in bps
int availableBandwidth = 0; // in bps

In this thesis, most QoS parametersGientPreferences do not
reflect “real” situation because they are given through aiossface. In reality,
QoS parameter should be given real values by using some nmmuastse
Actually one task in the COMCAR project deals with how to get QoS parameters.

6.4 Client

The most important class in the client sideCigentimpl . This class
has two main functions, firstly to find the transcoder via senbcoker, and
secondly to create a player in a window and then to play the stream.

When a client enters a URL to play the stream from the dileh, a
findTranscoder method is executed.

public boolean findTranscoder(SourceMedia sourceMedia,
ClientPreferences clientPreferences,
Systeminfo systemlnfo,
Container container,
long startTime) {

The first three parameters is similar to the first thrparameters of
ServiceBrokerinterface.findTranscoder method. The
container parameter is the AWT container in which the video and control
buttons should be displayed. TétartTime is the time, in milliseconds, when
the media should be played. For example, if the client wants tothpasnedia
from the beginning, this parameter is simply given value 0. parameter is
important in transcoder handover because the new transcoder will usatgtiay

the stream from the beginning. This parameter only affectseineval
applications, not in conversational and distributed applications.

The task ofindTranscoder method is to find the service broker and
then ask the service broker to find a transcoder. After thatptbthod creates a

Chapter 6: Implementation 69

new session to receive the stream. The stream flows frormathgcoder to the
client is shown in Figure 6-7.

TranscoderPlayerimpl

Clientimpl
A, A
RTP Manager 1a RTP Manager 1b
) ,
DataSource la DataSource 1b

DataSource

)

Player

Figure 6-7 Stream flow in the client.

As in the transcoder, there are t®dPManagers in the client, one for
audio stream and the other one for video stream. These two dlesu&l be
merged into one singlPataSource so that the stream can be played without
any synchronization problems. According to Sun Microsystems [27], UBdBE
the audio stream to synchronize with the video stream in a merged data source.

6.5 Establishing Connection

This section summarizes the discussion of the implementation ipart
shows briefly how the connection between the client and the sergstablished.
Figure 6-8 is the modified version of Figure 5-8, it shows theopod$ to
establish a connection from Java perspective. This figure has deplified
because in reality, there is a Web server which hosts the fisésbof the
transcoder and the service broker. The client may download theilstibffthe
service broker and the server broker may download the stub fitee thnscoder
via this Web server.

Chapter 6: Implementation 70
SEET 1. ServiceDiscoveryManager.lookup()
T ‘ T 2. ServiceBrokerlnterface
13 10 9 3. ServiceBrokerlnterface.findTranscoder()
4. ServiceDiscoveryManager.lookup()
UMENEEE SR 5. TransoderInterface
‘TranscoderInterface 6. TranscoderInterface.addClient()
Transcoderimpl 7. Transcoderldentifier
Y 8. Transcoderldentifier
TranscoderPlayerinterface 9. Request stream
TranscoderPlayerimpl 10. Stream
. 11. Stream
12. TranscoderPlayerinterface.play()
13. Control
6 7
Lookup Service
ServiceBrokerDaemon (reggie.jar)
12 11)
ServiceBrokerlnterface 4 >
; TranscoderInterface
ServiceBrokerimpl |« 5
—
] 3 8
I
11—
Clientimpl ’ ServiceBrokerlnterface ‘
—2

Figure 6-8 Protocols to establish a connection from Java perspective.

6.6 Summary

This chapter discusses the implementation of the prototype obretw
service infrastructure for transcoding multimedia streams.stdtts with the
selection of programming languages, communication protocols and service
discovery protocols from some available alternatives. Thieofethis chapter
discusses the technical parts of the implementation.

Chapter 7

Integration and Testing

This chapter explains the integration of all components impi&dein
Chapter 6. The integration includes the installation of each compamnk
several computers. The next step it to test the infragteugtith different source
media.

7.1 Integration

In the integration of the transcoding infrastructure, | used akver
computers in the Computer Science department, University of Stuttgart.

7.1.1 Hardware

The hardware used here were three machines of Sun Ultra Spta I
MHz, 512 MB RAM with Sun OS 5.8 operating system and one notebook of Intel
Pentium Il 600 MHz, 128 MB with Windows XP operating systems.

7.1.2 Software

The list below shows the software used to integrate and test the
implementation of this thesis:

» J2SE (ava 2 Standard Editigrversion 1.3.1.
* JMF @ava Media Framewojkversion 2.1.1a.
» Jini Technology Starter Kit version 1.2.

» Apache Web server 1.3.

The first three software should be installed on all machines, whédelast
software was only installed one machine which acts as a Web server.

7.1.3 Service

There are two main services | used here, i.e. retrieval etdbdtion
services. The retrieval services are on-demand audio and sidEmms from a
Web server. The distribution services were audio and video broaduast was
sent to a multicast addresses. The audio used here had fotR8 &f4 kHz, 16

Chapter 7: Integration and Testing 72

bit, stereo; while the video had format of MPEG, 352 x 240, 30 fps and4¥IP3
kHz, 16 bit, stereo.

7.1.4 Installation

As explained in the last chapter, there were five main comp®érnhe
transcoding infrastructure, i.e. server, transcoder, client, lookupceeamnd
service broker. Beside those components, we need a Web sestanetthe stub
files and the media files. We also need RMI daemon and RN&étnedo support
Jini and Java RMI. The last components | added in the infrastrustueslio
broadcast and TV broadcast that delivers audio and video streamesrietivork.
Figure 7-1 shows the installation of these components into the “real” cosputer

horn
129.69.210.93 wh
osaune Lookup service uba

229.69.210.92 Service broker 129.69.209.104
TV broadcast Transcoder 2 W_eb server
Radio broadcast Transcoder 3 Cl!ent 1
Transcoder 1 RMI daemon Client 2

RMI registry

129.69.210.0 129.69.209.0

129.69.190.0

mylaptop
129.69.190.1
Client 3

Figure 7-1 Installing the components of the transcoding service into computers.

7.1.4.1 Web Server

The Web server was installed on the tuba machine on port 8080, so the
complete URL of the Web server_is http://tuba.informatik.uni-shntige:8080br
http://129.69.209.104:8080/For example to request Star Wars movie from the
Web server, one could use the URL of http://tuba.informatik.uni-
stuttgart.de:8080/media/starwars.mov

Chapter 7: Integration and Testing 73

7.1.4.2 Radio and TV Broadcast

The radio broadcast and TV broadcast were sent from posaune machine
the multicast addresses. They were transmitted using JMSapplication,
which is provided by JMF. The radio broadcast was sent to thecastiladdress
of 239.0.0.5/22010, while the TV broadcast was send to the multicast address of
239.0.0.6/22020.

7.1.4.3 RMI Daemon and RMI Registry

RMI daemon and RMI registry are needed for the Jini and Java RMI
respectively. Both of them are provided by JDK in two filesidr and
rmiregistry. The simplest way to run RMI daemon and RMiIstegiis by typing
the following command.

unsetenv CLASSPATH
rmid -J-Dsun.rmi.activation.execPolicy=none &
rmiregistry &

7.1.4.4 Lookup service

The lookup service used in this thesis is the lookup service from Sun
Microsystems. The file for lookup service is provided in Jinileda
reggie.jar . The following command is an example of how to run the lookup
service.

java —jar
-Djava.security.policy=file:/scratch/jinil_2/policy/policy.all
[Iscratch/jinil_2/lib/reggie.jar
http://tuba.informatik.uni-stuttgart.de:8080/jini/reggie-dl.jar
/scratch/jinil_2/policy/policy.all
/home/pranatay/tmp/reggie_log public

7.1.4.5 Service broker

The main class of the service broker is calmtviceBroker . The
service broker can be run in GUI mode or in text mode only. By dethelt
service broker is run in GUI mode. It can be run in text modedding -nogui
parameters, such as the example below.

java -classpath ".:/scratch/IMF2.1.1/lib/jmf.jar:
[scratch/jinil_2/lib/jini-core.jar:
[scratchl/jinil_2/lib/jini-ext.jar:
/home/pranatay/Transcoding/classes/"
-Djava.security.policy=file:/scratch/jini1l_2/policy/policy.all
-Djava.rmi.server.codebase=http://129.69.209.104:8080/classes/
com.antonypranata.transcoding.ServiceBroker —nogui

Chapter 7: Integration and Testing 74

7.1.4.6 Transcoder

There are three transcoders in this infrastructure, each of skeems
different formats. Table 7-1 shows the list of all transcodgtts their supported
formats.

Table 7-1 List of transcoders in the integration part.

Transcoder Supported Sour ce For mat Supported Destination
For mat
Transcoder 1 MPEG/Audio (all sampling | MPEG/Audio (all sampling
rates) rates)
MPEG/Video (all sizes) H.263 (all sizes)
Transcoder 2 MPEG/Audio (all sampling | DVI (all sampling rates)
rates)
MPEG/Video (all sizes) MPEG/Video (all sizes)
Transcoder 3 MPEG/Audio (all sampling | y-Law
rates)
MPEG/Audio GSM Mono
The main class of the transcoderTiganscoder . Like the service

broker, the transcoder can be run in GUI mode or text mode only. olltvihg
command run the transcoder in GUI mode.

java -classpath ".:/scratch/IMF2.1.1/lib/jmf.jar:
/scratch/jinil_2/lib/jini-core.jar:
[/scratch/jinil_2/lib/jini-ext.jar:
/home/pranatay/Transcoding/classes/"
-Djava.security.policy=file:/scratch/jinil_2/policy/policy.all
-Djava.rmi.server.codebase=http://129.69.209.104:8080/classes/
com.antonypranata.transcoding.Transcoder

7.1.4.7 Client
There are three clients used in this integration part, eadheof has
different QoS parameters, i.e:

* Client 1, supports MPEG/Video (all sizes), H.263 (all sizes), and
MPEG/Audio (all sampling rates); the available bandwidth giasn 1
Mbps.

» Client 2, supports H.263 (all sizes), DVI (all sizes), and GSM Mtm®;
available bandwidth was given 256 kbps.

* Client 3, supports MPEG/Video (all sizes) and DVI (all sampfiaigs);
the available bandwidth was given 128 kbps.

Chapter 7: Integration and Testing 75

7.2 Testing

In this step, we had already had media files stored in a Weérsarthe
tuba machine as well as TV and radio broadcast from the posaatene. The
situation can be illustrated in Figure 7-2.

Web server Radio broadcast TV broadcast
- Video file (MPEG
Audio file (MP3
. 352 x 288 fps + . MPEG 352 x 288 fps +
gtéleljgg), 16 bit, MP3, 44kHz, 16 MP3, 44kHz, 16 bit, stereo MP3. 44KkHz, 16 bit, Stereo
bit, stereo)

Transcoder 1 Transcoder 2 Transcoder 3
MPEG/Audio - MPEG/Audio MPEG/Audio - DVI MPEG/Audio - pLaw
MPEG/Video - H.263 MPEG/Video - MPEG/Video MPEG/Audio - GSM Mono

Client 1 Client 2 Client 1
MPEG/Video H.263]
H.263 DVI 'B"CIEGN ideo
MPEG/Audio GSM Mono 128 Kbps
1 Mbps 256 kbps P

Figure 7-2 The configuration of testing purpose.

In the first test, client 1 requested media stream from tfedreas
http://tuba:8080/media/richard.mp3 he service broker, after performing service
brokering algorithm, selected transcoder 1 and the format MP3, 441&Haif,
stereo. The service broker selected MP3, 44 kHz, 16 bit, stereo bdabais
format has the highest priority according to the priority dafdee Table 5-1).
Besides that, transcoder 1 did not serve any clients yet @atirthe@ so it has
enough resources to serve the client.

The required time to setup the connection was 6 seconds. It took quite
long because this was the first request so it means eithelieht and the service
broker did not have any information about the lookup service yet.

When the available bandwidth of client 1 was decreased to 100 kieps, t
service broker still selected transcoder 1 but with the fomR®, 44 kHz, 16 bit
mono.

The required time to setup the connection was around 1 second. In this
request, it seems that the client had already had the catie sérvice broker so
that it did not need to resend request to the lookup service. The thamg
happens in the service broker, it had already had the cache oaniseader so
that it did not need to resend request to the lookup service. TWwhyithe setup
connection was about 1 second only.

Chapter 7: Integration and Testing 76

When the available bandwidth of client 1 was decreased agab kbps,
the service broker still selected transcoder 1 but with the favR8, 22 kHz, 16
bit, mono. The required time to setup the connection was around 1 second.

In the second test, client 2 requested stream from TV broadcasthe
address 239.0.0.6/22020. The service broker then selected transcoder 2 with the
format H.263 176 x 144 pixels for video stream and DVI 11 kbps, 4 bit, mono for
audio stream. This format was selected because it h&ggtinest priority when it
is compared to the client’s preferences (see also priority table in 3-&)le

The time to setup the connection was 2 seconds. The time required t
setup this connection was less then the first test becausertiee broker had
already had the cache of transcoders in the network so that rotlineed to
resend request to the lookup service.

When the available bandwidth of client 2 was decreased to 100 kieps, t
service broker selected transcoder 2 with the format H.263 128px6B for
video stream and DVI 8 kbps, 4 bit, mono for audio stream. The timéuip the
connection was 1 second.

Next the available bandwidth of client 2 was decreased to 30 Kimps,
service broker reported that it could not find the transcoder. i Htiecause no
video stream can be delivered in 30 kbps bandwidth (see Table 5-3).

With unchanged bandwidth, client 2 then requested stream from radio
broadcast. The service broker selected transcoder 3 with the format GSM Mono.

In the last test, client 3 request video stream from the axidres
http://tuba:8080/media/starwars.mp3The service broker selected transcoder 2
and the format MPEG 128 x 96 pixels for video stream and DVI 8 kHzt, 4 bi
mono for audio stream.

7.3 Summary

This chapter discusses the integration of the implementation pragra
Chapter 6. The integration uses computers in the lab of Computarc&cie
department, University of Stuttgart. This chapter also descrdmene tests
performed on the infrastructure integrated in the integration part.

Chapter 8

Related Works

This chapter discusses some related works as well as thebataotriof
this thesis to the community of distributed multimedia systems.

8.1 Proxy-based Transcoding

Fox, et. al. [8] has proposed a proxy-based transcoding infrastructure using
a principal which they caltlatatype-specific lossy compression on-demand
distillation. The purpose is to increase Quality of Service for the chedtto
reduce end-to-end latency perceived by the client. The distillatioefinement
uses an intelligent decision to throw away information based osethantic type
of the data. For example, distillation of video might include redoctif color
information, high-frequency components, pixel resolution, and/or frame rate.

The infrastructure proposed by Fox, et. al. is able to adapt web pades
their contents, including images and video streams. They develogkstillar,
which contains image distiller, rich-text distiller, and videstider, on a proxy
server. The proxy itself might be put in the Internet Serviosi@er connection
point or wireless basestation.

8.1.1 Architecture

The architecture of proxy-based transcoding infrastructure proposed by
Fox, et. al. is shown in Figure 8-1.

Client App
App Support,

Jow
bandwidth

frigh bandwidih,
Tow latency

Figure 8-1 Basic architecture of proxy-based transcoding (courtesy of A. Fox,
et.al., 1996).

Chapter 8: Related Works 78

The components of the infrastructure @m@xy, one or moredatatype-
specific distiller an optionalnetwork connection monitprand theapplication
support library,

8.1.1.1 Proxy Control Point

A client communicates exclusively with the proxy, a controlleycpss
located logically between the client and the server. The tasikeoproxy is to
retrieve content from the server on behalf of the client and thenndae which
distillation engine must be employed. When the proxy calls a disitllpasses
information such as the hardware characteristics of the -clegtgeptable
encoding, and available network bandwidth.

8.1.1.2 Datatype-Specific Distillers

The distillers are processes that are controlled by proxies afaimpe
distillation on behalf of one ore more clients. The distillefgren distillation to
the data, either text, images or videos, along three important dimensions, i.e.:

* Network variations, include bandwidth, latency and error behavior of the
network.

» Hardware variations, include screen size and resolution, grayagsagle
bit depth, memory and CPU power.

» Software variations, include the application-level encoding thelieat
can handle, for example MPEG or H.263.

8.1.1.3 Network Connection Monitor

A Network Connection Monitor (NCM) which monitors end-to-end
bandwidth and connectivity to the proxy's client. NCM uses three metifods
determining the characteristics of the client's network connection, i.e.:

* User advice The user notifies the proxy via a user interface his expecte
bandwidth.

* Network profile NCM uses the average characteristics of the network.

* Automatic NCM creates a process to track the values of eftectiv
bandwidth, roundtrip latency, and probability of packet error.

8.1.1.4 Client-side Architecture

The architecture supports both modified and unmodified client
applications. The modified applications make usepylication support library
that provides an APl with suitable abstractions for manipulating @aod
interacting with the proxy. Unmodified legacy applications can sakentages
of the architecture with the help ofclent-side agent The client-side agent is a
process that runs locally on the client device.

8.1.2 Contribution of This Thesis

A proxy-based transcoding is good enough to solve heterogeneity
problem. However it has two main disadvantages, i.e.:

Chapter 8: Related Works 79

» Scalability The client of proxy-based transcoding depends on one proxy
to transcode the stream. If the number of users is growing, the pr
might become overloaded. A. Fox et. al. also mentioned this prololem a
they have simulated an image-distiller on a single 80-MHZPAFRISC
workstation. The reasonable number of users for this simulatioauadr
20 users. If the number of users is more than 24, the systenens ev
unusable.

» Single Point of Failure The proxy-based transcoding has a single point of
failure because if the proxy crashes, all clients are nobleeta receive
anything.

The architecture of this thesis eliminates two main disadgast of the
proxy-based transcoding. Firstly, it solves scalability probleminbywducing
several transcoders on the network. Secondly, it eliminaigke goint-of-failure
because each component might be duplicated, including the lookup sandce
the service broker.

8.2 KISS Project

K. Jonas, et. al. on the KISS project [18] [19] proposed communication
structure for streaming services in a heterogeneous network atlwats
transparent integration of network service applications. Netwovkcesrmay be
concatenated so that the content streams may experience semesdions on
their way through the network, in order to achieve a requested QoS.

K. Jonas, et. al. designed a network with several Service Applications (SA)
and Network Access Points (NAP). Figure 8-2 shows the artimiéeof network
infrastructure in KISS project.

This client The network (This client B
receives m =1 transmits recelves =3
high quality ,H* t*‘ at 56 kBit/s \fow quality 7 am'-'
—
L . 1 \
The server’ = SA 2 \

transmits E S
audio at ;‘; _,_._---’ I
128 kBit's ‘ — LANI [SA4
" The sA \ E/ NAP | —/
adapts \'E’E‘

=]

12810
This NAP This NAP |
announces tells about
the service the service

32 kBit/s
Figure 8-2 Architecture of network infrastructure of KISS project (courtesy of K.
Jonas, et. al., 1998).

The mediator between end-system applications and the serteerkés
the NAP. The SA connects to the NAP and offer its service.niCligplications
connect to the NAP and request services. The NAP handles services
announcement and delivery. If the service requirement does not rich

Chapter 8: Related Works 80

announced service, the NAP tries to find a service applicatidghemetwork
which adapts the offer to the requirement.

The server and the client only know NAP, they do not know SA at all
The server announce its service via NAP and the client refprestservice via
NAP. Each time a client requests for a stream, it sends the request to tlatlAP
then NAP finds for an appropriate SA using multicast messagesexaaiple a
server provides a service (a live audio stream) withta e of 128 kbps. The
server announces its service via NAP N1. The announcementnitiggif look
like "CNN Live 4 Mbps, MPEG-2". A client connected to NAP N&juests a
service with a maximum data rate of 64 kbps because of itedriandwidth.
The request itself might look like "CNN Live 64 kbps H.263". The NN¥Pnow
sends a multicast message into the network asking for the trangdude is able
to transcoder 4 Mbps to 64 kbps stream.

The advantage of the KISS infrastructure is that none of the user
applications are involved in any of the networking/multicastingérading
issues. This approach allows simple end-system applications tm @ltded
service transparently from SAs installed somewhere in theonletand without
knowledge of SA existence. Another advantage is that is providestteod for
increasing the variety of network services on demand. New eergdan be
installed and used without any end-system modification.

8.2.1 Contribution of This Thesis

The infrastructure proposed in this thesis is quite similar toKii$S
project from K. Jonas, et. al. The SA in the KISS projectgisvalent to the
transcoder in my thesis. The NAP in the KISS project is vanylas to the
service broker in my thesis. However, there are some diffeselnetween both
architectures, i.e.:

* The KISS project uses multicast messages to find SA dynbyniadiile
my thesis uses a directory service of transcoder, called lookujgese
The approach of this thesis eliminates multicast messagesduutes the
transcoder to register with the lookup service.

» This thesis uses a priority-based service brokering, it meansethie
broker has a list of possible destination formats and searches the
transcoder starting from the highest priority to the lowest onke T
KISS project uses only one destination format and increasesTihefT
the multicast messages when NAP cannot find the appropriate SA.

8.3 ICEBERG Project

The main goal of the ICEBERG project [21] [33] is to develop anreter
based integration of telephony and data services spanning divecsss ac
networks. The ICEBERG project defines service portability, th#tesability to
access services using any devices, anywhere, continuouslynefiiity support
and dynamic adaptation to resource variations. A middlewareicserv

Chapter 8: Related Works 81

infrastructure, called APCAUtomatic Path Creation allows services to be
accessed transparently from any device and any network.

Figure 8-3 shows one scenario of the use of the APC.

ICP Connector: —--&= :
RTP Connector: —= Request Transcoder

_ O HTML ™~
GSM “w, Map Service

HTML.

N I’/
Qlli Sun audio : Text Oﬂ'

GSM Encoder Text-to-speech Content Extractor
Translator

Figure 8-3 One scenario of APC in the ICEBERG project (courtesy of Mao and
Ratz, 2000).

In this scenario, a user is retrieving map information using M @®ne.
The APC establishes the path by converting HTML format fronnthp service
to the GSM format by going through content extraction, speech syzghesd
GSM encoding operators. APC is completely transparent to thebesause it
only interacts with the Network Service Provider.

The path construction consists of four steps, i.e.:

» Logical Path Creation A logical path consists of an ordered sequence of
operators joined by connectors. The logical path is determined usi
shortest path search.

* Physical Path Creation A physical path is a logical path, along with a
choice of actual nodes (physical machines) on which to run the operators.

» Path Instantiation, Execution, Maintenance and Queryiiidis steps set
up the path so that the data flow can be started.

» Path Tear-Down When a path is no longer needed, the user informs APC
to stops the data flow, removes connectors, and frees other relevant
resources.

The ICEBERG is a very good and ambitious project and the transcoding
infrastructure, which they call APC, is only a small parthef overall goal of the
project. Actually, the architecture proposed in this thesis wsae principles of
the ICEBERG project. For example, the logical path constructioheoAPC is
quite similar to the service brokering algorithm, while physjzath creation is
quite similar to the service chaining protocol.

8.3.1 Contribution of This Thesis

Since the ICEBERG project concentrates on building any-to-any
communication, they do not pay attention to the Quality of ServgeeisThis

Chapter 8: Related Works 82

result of this thesis, although is not good as the ICEBERG projecst beist it
gives a contribution in the QoS issue.

8.4 Summary

This chapter gives an overview and comparison of some relatdd.wor
There are three related works discussed in this chapter, i.e. lpaorg
transcoding, KISS project and ICEBERG project. At the end of eachsdisn,
the contribution of this thesis is also discussed.

Chapter 9

Summary and Future Works

9.1 Summary

The growth of Internet mobile devices leads to two basic problams
distributed multimedia systems. The first problem is heterogeoné client
devices which have different capabilities along many axes, incluagtgork
connections. The client may be connected to the Internet videdareAN, such
as WaveLAN, or Wireless WAN, such as third generation mobiearks. The
second problem is mobility which allows a mobile client to monenf one
network to another network which might have different bandwidth.

This thesis solve heterogeneity and mobility problems by transgodi
media streams to the appropriate format for the client &ssttoder. The goal of
this thesis is to implement a prototype of network service iméretsire for
transcoding multimedia streams. The prototype also includes esdmo&ering,
that is the protocol to find the appropriate transcoder, as we#rage chaining,
that is the algorithm to build service chain from the sereethe client via
transcoder. The prototype is developed in Java platform usingJ®RWMand JMF
technology.

The prototype has been tested in the lab of Computer Scienagnaema

University of Stuttgart. It run well without any problems. Heer this
prototype still needs some other tests in real-world situation.

9.2 Future Works

The prototype implemented in this thesis still needs many imprent
i.e.
* Most of QoS parameters in this prototype is constant valuesdth@ot
represent the actual condition of the system and network. Iruthee f
some measurements of QoS parameters, such as bandwidth, latdncy a
jitter, should be integrated in the prototype.

* This thesis only support 1-level transcoding, it means there isamndy
transcoder between server and client. It would be better if the

Chapter 8: Related Works 84

infrastructure support N-level transcoding as well so that ave buiild
more sophisticated infrastructure.

* The prototype only supports Campus LAN with limited number of users.
There are many things should be considered so that this prototype can be
implemented in the Internet. The most important is scalability.

Appendix A

Java Media Framework

This appendix discusses briefly JMBPaya Media Framewolk a
multimedia library for Java from Sun Microsystems, Inc. Forew®@tailed about
JMF, see the Java Media Framework Programmer’s Guide [27].

JMF provides a unified architecture and messaging protocol for mmgnag
the acquisition, processing and delivery of time-dependent metha (#slF).
JMF is designed to support many well-known formats of media, subMP&s,
H.263, DVI, GSM, and many more. This thesis uses JMF to sendeaaive
media stream to and from each components in the transcodingtrinftase.
Figure A-1 shows the high-level architecture of JMF.

Java Applications. Applets. Beans
JMF Presentation and Processing AP

JMFE Flug-In AP

Figure A-1 High-level architecture of JMF (courtesy of Sun Microsystems, Inc.,
1999).

JMF uses the basic model very similar to devices suchpasdacks or
VCRs. When we play a movie using VCS, we provide the megbarstto the
VCR by inserting a video tape. A data source in JMF actshi&evideo tape, it
encapsulates the media stream. Playing and capturing audiedandmwth JMF
requires the appropriate input and output devices, such as microphonesscame
speakers and monitors.

The basic class needed in JIMPPiayer class, which processes an input
stream of media data and renders it at a precise tingeireFA-2 shows the JMF

Appendix A: Java Media Framework 86

Player model. ADataSource class here is used to deliver the input stream to
thePlayer
i

Figure A-2 JMF Pl ayer model (courtesy of Sun Microsystems, Inc., 1999).

Another basic class i$rocessor , which is a specialized type of
Player that provides control over what processing is performed on the input
stream. In addition, aProcessor can output media data through a
DataSource so that it can be presented by anotAleryer or Processor ,
further manipulated by anothelProcessor , or delivered to some other
destination, such as a file. Figure A-3 shows the Pxi€essor model.

o

Figure A-3 JMF Pr ocessor model (courtesy of Sun Microsystems, Inc., 1999)

Figure A-4 shows the stages Bfocessor . As shown in this picture,
the processing of media data is split into several stages:

» Demultiplexingis the process of parsing the input stream, and it is
extracted if the input stream contains multiple tracks.

* Pre-processings the process of applying effect algorithms to the extracted
tracks.

DataSource

* Transcodingis the process of converting each track from one format to
another. It is actually the main topic of this thesis.

» Post-processings the process of applying effect algoritms to decoded
tracks.

* Multiplexingis the process of interleaving the transcoded media tracks into
a single output stream.

* Renderings the process of presenting the media to the user.

Appendix A: Java Media Framework 87

Limre i ne

realize PRCE

#, LetMedi{aTime

deallocate Fansion E .
CCE Covigwe CompleteEverm
RCE FeslizeConpleiebem
PRZE PrededchCompleeE veni
SE SwpEeeni

Figure A-4 Stages in Processor (courtesy of Sun Microsystems, Inc., 1999)
What is used extensively in this thesis from JMF is the BMIP API. It
allows the playback and transmission of RTP streams. Figuseshews the
high-level architecture of JMF RTP API.

Aeal-Time Media Frameworks and Applications

Real-Time Control Protocol (RTCP)
Real-Time Transport Protocol (RTP)

Figure A-5 High-level architecture of JMF RTP API (courtesy of Sun
Microsystems, Inc., 1999).

ThePlayer andProcessor model of JMF RTP API is very similar to
Figure A-3 and Figure A-2, but JMF RTP API introduces a newsclealled
RTPManager. RTPManager is the starting point for creating, maintaining and
closing an RTP session. The taskkdPManager includes to keep track of the
session participant and the streams that are being transnuttediritain the state
of the session as viewed from the local participant, to handI®&Ti@&P control
channel and support RTCP for both senders and receivers. Figure & thleo
model of JIMF RTP API from the sender and receiver view.

Appendix A: Java Media Framework 88

Media file Processor H[DataSource]—b RTPManager

——— — Player DataSource t RTPManager
4 [] g

Client

Figure A-6 The model of JIMF RTP API from sender and receiver perspective
(courtesy of Sun Microsystems, Inc., 1999).

Appendix B

Class Hierarchy

This appendix presents hierarchy of the classes developed in this thesis.

Client

JFrame
A

ClientFrame H Clientimpl

Client F-—---—- -)

Service Broker

Remote UnicastRemoteObject Serializable
Y Y Y

ServiceBrokerInterface

?

ServiceBrokerimpl

JFrame
Y

1

1 1

1
ServiceBrokerFrame H ServiceBrokerDaemon

ServiceBroker ~ fF---------------->-

Appendix B: Class Hierarchy

Transcoder
Remote UnicastRemoteObject Serializable
Y Y 'Y 'Y

Transcoderinterface
A

TranscoderPlayerinterface
Y

TranscoderPlayerimpl

0..n

\
—‘ Transcoderimpl

JFrame 1 1..n
A

1 1
1
TranscoderFrame H TranscoderDaemon

Transcoder @ F--—-—-—————————~——~— =

References

[1]
[2]

[3]

[4]

[5]
[6]
[7]
[8]

[9]

[10]
[11]
[12]

[13]

A. V. Aho, J. E. Hopcroft and J. D. Ullmamata Structures and
Algorithms Addison-Wesley, USA, 1987.

H. Bharadvaj, A. Joshi and S. Auephanwiriyak@th Active Transcoding
Proxy to Support Mobile Web Acced2roc. IEEE Symposium on Reliable
Distributed Systems, 1998.

D. Chalmers and M. Slomarsurvery of Quality of Service in Mobile
Computing Environment®epartment of Computing, Imperial College,
London, 1999.

D. Chen, R. Colwell, H. Gelman, P. K. Chrysanthis and D. Mossé. A
Framework for Experimenting with QoS for Multimedia Services
University of Pittsburgh, Pittsburg, PA, USA, 1996.

COMCAR Project. COMCAR — Communication and Mobility by Cellular
Advanced Radiohttp://www.comcar.de/overview.pdf999.

G. Coulouris, J. Dollimore and T. KindberBistributed Systems Concepts
and Design Pearson Education Limited, Essex, UK, 2001.

S. E. Czerwinski, et. alAn Architecture for a Secure Service Discovery
Service Mobicom'99, Seattle, WA, USA, 1999.

A. Fox, S. D. Gribble, E. A. Brewer, E. AmiAdapting to Network and
Client Variability via On-Demand Dynamic DistillatiorProc. Seventh
International Conference on ASPLOS, 1996.

Guojun Lu. Communication and Computing for Distributed Multimedia
Systems Artech House Inc., Norwood, MA, USA, 1996.

IETF. DoD Standard Transmission Control Protocd®FC 761,
http://www.ietf.org/rfc/rfc0761.txtJanuary 1980.

IETF. User Datagram Protocol RFC 768,
http://www.ietf.org/rfc/rfc0768.txtAugust 1980.

IETF. Internet Protocol Darpa Internet Diagram Protocol Specification
RFC 791, http://www.ietf.org/rfc/rfc0791.txBeptember 1981.

IETF. Internet Stream Protocol Version 2 (STHFC 1819,
http://www.ietf.org/rfc/rfc1819.txtAugust 1995.

References 92

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

IETF. RTP: A Transport Protocol for Real-Time ApplicatiorRFC 1889,
http://www.ietf.org/rfc/rfc1889.txtJanuary 1996.

IETF. HyperText Transport Protocol — HTTP/1.RFC 2068,
http://www.ietf.org/rfc/rfc2068.txtJanuary 1997.

IETF. Real-Time Streaming ProtocoRFC 2326,
http://www.ietf.org/rfc/rfc2326.txtApril 1998.

Van JacobsonPathChar - A Tool to Infer Characteristics of Internet
Paths Network Research Group, Lawrence Berkeley National Laboratory,
Berkeley, CA, 1997.

K. Jonas.Forget the Net! Architecture, Specification and Implementation
of a Communication System for Real-time Streaming in Heterogeneous
Environments 1997 Pacific Workshop on Distributed Multimedia Systems
Vancouver, Canada, July 1997.

K. Jonas, M. Kretschmer and J. J. M6dek@et a KISS - Communication
Infrastructure for Streaming Services in a Heterogeneous Environment.
ACM Multimedia 98, Bristol, UK, September 1998.

E. Kovacs, R. Keller, T. Lohmar and A. Helddaptive Mobile Applications
over Cellular Advanced Radid?ersonal Indoor and Mobile Radio
Communications (PIMRC). London, UK, September 2000.

Z. M. Mao and R. KatzAchieving Service Portability in ICEBER&S
Division, EECS Department, University of California at Berkeley,
California, USA, 2000.

Microsoft Corporation.Understanding Universal Plug and Play White
Paper http://www.upnp.org/download/UPNP_UnderstandingUPNR.doc
2000.

Object Management Group (OMG). CORBA Basics.
http://www.omg.org/gettingstarted/corbafag.h2001.

K. Rothermel. Lecture Note: Introduction to Distributed Systenhsstitute
of Parallel and Distributed High-Performance Systems, University of
Stuttgart, Germany, 2001.

[25] John R. Smith, Rakesh Mohan and Chung Sheng tanscoding Internet

[26]
[27]

[28]

Content for Heterogeneous Client Devicésoc. IEEE International
Conference On Circuits and Systems (ISCAS), May 1998.

R. Steinmetz and Klara Nahrstedtlultimedia: Computing,
Communications and Application®rentice Hall Inc., NJ, USA, 1995.

Sun Microsystems Indava Media Framework Programmer’s Guide
http://java.sun.com/products/java-media/imf/2.1.1/gyitieHn9.

Sun Microsystems, IncJava Remote Method Invocation Specification
http://java.sun.com/j2se/1.3/docs/quide/rmi/spec/rmiTOC,ht899.

References 93

[29] Sun Microsystems Inclini Specifications v1.2
http://www.sun.com/jini/specs?2001.

[30] Sun Microsystems IncJini Network Technology Datasheet
http://wwwwswest.sun.com/jini/whitepaper2001.

[31] A. S. TanenbaunComputer Networks3Edition. Prentice Hall Inc., NJ,
USA, 1996.

[32] A. S. Tanenbaum and M. van Steddistributed Systems: Principles and
Paradigms Prentice Hall Inc., NJ, USA, 2002.

[33] H.J. Wang, et. allCEBERG: An Internet-core Network Architecture for
Integrated CommunicationdEEE Personal Communications (2000):
Special Issue on IP-based Mobile Telecommunication Networks, 2000.

[34] World Wide Web Consortium (W3C)Simple Object Access Protocol
(SOAP) 1.1 http://lwww.w3.0rg/TR/SOAR/2000.

[35] L. C. Wolf, C. Griwodz and R. Steinmet&ultimedia Communicatian
Proceedings of the IEEE, Vol. 85, No. 12, December 1997, pp. 1915 — 1933.

