
ArtiVisi Intermedia
http://www.artiv isi.com
contact :
support@artivisi .com

Java Advanced
ver 1.0.1 - 0903

Authors :
Endy Muhardin

I Putu Artha Kristiwan
Nurhasyim
Nursapta

Lab Module

ArtiVisi's Skill Enhancement Series

About the document
Copyright
This document is copyrighted (c) 2003 ArtiVisi Intermedia. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the
license is available at http://www.gnu.org/copyleft/fdl.html

Disclaimer
No liability for the contents of this documents can be accepted. Use the concepts, examples
and other content at your own risk. As this is a new edition of this document, there may be
errors and inaccuracies, that may of course be damaging to your system. Proceed with
caution, and although this is highly unlikely, the author(s) do not take any responsibility for
that.
You are strongly recommended to take a backup of your system before major installation and
backups at regular intervals.

Version
Revision : 1.0.1
Date : September 2003
The latest version of this document is available on http://courseware.artivisi.com

Knowledge Required
This document assume the reader (you) to be fluent in Java Programming Fundamentals.
Basic capabilities such as instantiating objects, defining classes, methods, attributes, and
inner classes must be mastered. The reader is as well required to be able to use Java API
documentation and Java Tutorial.

Feedback and corrections
If you have questions or comments about this document, please feel free to mail us at
support@artivisi.com. We welcome any suggestions or criticisms. Thanks.

SESSION I
Advance Swing

Subject :
Advance Swing Component

Objective :
- Understanding Progress Bar
- Understanding Progress Bar Input Stream

Preface :
- Explain what do you know about Progress Bar ?
- Explain what do you know about Progress Bar Input Stream

Exercises :
1. Create a program that use a Progress Bar component, this program will

show the percentage progress of looping process from 0 to 1000. Follow
this instruction bellow to do this exercise :

- Create user interface (see Figure 1), add all component that are
needed such as JProgressBar, JTextArea, JButton. Use the layout
manager that are needed too.

- When button Start pressed looping process will start and so the
Progress Bar. When the button Start pressed this will invoke the
Thread (see next step bellow to create thread)

- Create a Thread where inside of this, make a looping process
from 0 to 1000.

To create a Thread :
- implements interface Runnable on your class definition.
- Override method public void run() inside your class.
- Set the delay of this Thread using method sleep(delay_time) .
- Use Exception handling method to cover system error or runtime

error in this case InterruptedException
Inside looping process when the value increase one by one, set the
Progress Bar value using method setValue(increasing_value) and
append increasing value into text area.

Figure 1

Do It Your Self :
1. Create program that able to read a text file, see this spesification bellow

and Figure 2 and Figure 3:
- choose the text file that will be read with, press the Open button
- when button Open is pressed the file chooser dialog will appear

(see Figure 2). File choosen will appear int text field near the
Open button, complete with the path.

- Press button Read, the program will begin read the containt of file
text that choosen above. Every read one character from file text,
the character will appear inside the text area and the Progress
Bar will increase too.

2. Follow this instruction bellow :
- Create the user interface, see Figure 3
- Add listener to button Open. And write this code bellow inside of

that :
int
returnVal=fileChooser.showOpenDialog(ReadFile.
this);
if(returnVal == JFileChooser.APPROVE_OPTION) {

file=fileChooser.getSelectedFile();
String path=file.getPath();
fileName.setText(path);

}
This program will appear the file chooser dialog.

-
- Inside that :
- read the text file using I/O
- every time read a character from text file increase the Progress Bar.
- Every time read a character from text file append the character into

text area

Figure 2

Figure 3

SESSION II
ADVANCE SWING

Subject :
Concepts of Model View Controller and Jtable

Objective :
- Understanding JTable component
- Understanding AbstractTableModel class

Preface :
1. Explain what do you know about JTable component ?
2. Explaint what do you know about AbstractTableModel class ?

Exercises :
2. Create a simple program that use JTable component (see Figure 1). This

program will show the data in table format. Follow this instruction bellow :
- Create a user interface (see Figure 1), add all component that are needed

such as JTable, JscrollPane. Add JTable component to JScrollPane.
- In your class define two kind of array as follow :

- Object[][] data={new Integer(1),"Rajes
Khan","NewDelhi"},{…,…,…}}

- String[] header={"Enroll Number", "Student Name",
"Address"}

Column header will get from header array and data of the table will git from data
array. When the data and the column header will get from both array ?. The
answer is when you create a table (instance the JTable class)

Figure 1

3.
- Create a user interface (see Figure 1), add all component that are needed

such as JTable, JscrollPane. Add JTable component to JScrollPane.
- Define an inner class that extends AbsractTableModel class like bellow

class MyTableModel extends AbstractTableModel{
public String getColumnName(int column){

return header.get(column).toString();
}

public int getColumnCount(){
return header.size();
}

public int getRowCount(){
return data.size();

}

public Object getValueAt(int row, int column){
Vector vec=(Vector)data.get(row);
return vec.get(column);

}
}

-

Figure 2

Do It Your Self :
1. Create a program that have availablelity as you see in Figure 3 bellow.
2. Program Specification :

- when the user input the data into text field (Number and Name), and the
button Add is pressed, then that data will be added to the table

- when the button Clear is pressed then all the data in table will be removed
3. Instruction

- Use AbstractTableModel class to construct thet program
- Use method fireTableRowsInserted(int rowSize,int colSize) to update the

table.

Figure 3

SESSION III
Java Database Connectivity

Subject :
JDBC Driver

Objective :
- Understanding JDBC Driver
- Understanding Native Driver
- SQL Server for JDBC Driver

Exercises :
1. Install SQL Sever for JDBC Driver.

Instruction :
- copy file mssqlserver.jar, msutil.jar, msbase.jar into java home directory,

folder jre, lib, ext
exp : c:\j2sdk1.4.0_01\jre\lib\ext\mssqlserver.jar

c:\j2sdk1.4.0_01\jre\lib\ext\msutil.jar
c:\j2sdk1.4.0_01\jre\lib\ext\msbase.jar

- This simple program show to you how to use the driver

import java.sql.*;
class TestingDriver{
 public static void main(String[] args){
 String dbDrv =
 "com.microsoft.jdbc.sqlserver.SQLServerDriver";
 String dbUrl = "jdbc:microsoft:sqlserver://server;";
 dbUrl +="DatabaseName=pubs;User=sa;Password=""";
 try{
 Class.forName(dbDrv);
 Connection c = DriverManager.getConnection(dbUrl);
 }catch(ClassNotFoundException ce){

 System.err.println(ce);
 }
 }
}

- Create program to test the driver that istalled. This program is a simple
program that can display emp_id, fname, and lname from table employee
in database pubs (see Figure 1).

- To get data from table :
- create a Statement

Statement stm=connection.createStatement();

- execute the statement with specified query
ResultSet result =
 stm.executeQuery("select emp_id, fname, lname from
employee");

- looping the ResultSet to display data

Figure 1

Do It Your Self :
1. Create a program to make a table in a database (see Figure 2)
2. Program specification :

- the program can make a table into database
- user should insert data that require to make a table, as follow :
- Table Name, Field Name, Data Type, Konstraint (PRIMARY KEY, NOT

NULL, and so on)
3. Instruction :

- when button Add is pressed, then Field Name, Data Type, Konstraint will
be save in a Vector. Repeat this step to complete your Field Name that you
need.

- When button Create is pressed, then program will create a table into
database.

Figure 2

SESSION IV
Java Database Connectivity

Subject :
Using Native Driver

Objectives :
- Capable of using advanced resultset
- Capable of using PreparedStatements

Exercises :
1. Create GUI as shown in figure 4.1

Figure 4.1
Insert Form

2. Create class Person with the following attribute :
- Full Name
- Address
- Sex
- BirthDate

along with the accessor and mutator methods.

3. Create an interface PersonData with the following method:
public boolean create(String name);
public boolean update(Person oldData, Person newData);

4. Create a DAO class implementing PersonData with the following steps:
- Declare class XxxPersonData [replace Xxx with database engine you are using]
- Declare object variable ResultSet and Connection
- Add connection initialization codes in the constructor, passing the return value

to the object variable.
- Implement public Person create (Person p) method using updatable resultset
- Add ResultSet initialization code in the method.
[hints : use ResultSet.TYPE_SCROLL_SENSITIVE and
ResultSet.CONCUR_UPDATABLE options]
- Add code to insert new row using the specified object in the parameter
[hints : use moveToInsertRow, updateXxx, and insertRow method of the
resultset]

5. Check your result

Do it Yourself :
Implement public boolean update (Person oldData, Person newData) method as per
the explanation above, optionally use PreparedStatement for the query.

Figure 4.2
Update Form

SESSION V
Java Database Connectivity

Subject :
JDBC Batch Update

Objective :
- Understanding Batch Update

Exercises :
1. Create simple program to test batch update, this program will insert

data into table Personal in database. But before data insert into table
Personal, insert command first add into batch update.

2. Instruction :
- Make connection to database using the following code :

Connection con =
 DriverManager.getConnection(Url,”username”,”password”);

- Make a statement using the following code

Statement stmt =
 con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

- Add command to batch update

stmt.addBatch("INSERT INTO Personal VALUES('Amaretto',
'Italia',1,'12-12-1963')");

stmt.addBatch("INSERT INTO Personal VALUES('Hazelnut',
'Italia',1,'12-12-1963')");

stmt.addBatch("INSERT INTO Personal VALUES('Amaretto
Decafi','Italia',1,'12-12-1963')");

stmt.addBatch("INSERT INTO Personal VALUES('Hazelnut
Decafi','Italia',1,'12-12-1963')");

- Execute the batch update

int [] updateCounts = stmt.executeBatch();

Figure 1

Do It Your Self :
2. Create program with this user interface bellow

Figure 2

3.
- Fill the data in text file that are needed
- Press button Add to Batch to finish. This will add insert commanf

into batch update.
- Press button Execute Batch to save all data into table Personal in

database.

SESSION VI
Network Programming

Subject :
Socket and ServerSocket

Objective :
Understanding URL & URLConnection
Understanding Socket & ServerSocket

Review :
To create a URL with specific string that descript site location of a resource you can
used :

 URL(String spec)
while to construct a URL with specific protocol, host name, and port number you can
used :

 URL(String protocol, String host, int port, String file)

To open a connection to the URL object and returns an InputStream for reading from
that connection, used this method

public final InputStream openStream()

To create a stream socket and connects it to the specified port number at the
specified IP address, use this constructor :

Socket(InetAddress address, int port)

To creates a server socket on a specified port, use this :
ServerSocket(int port)

Exercises :
Create two program (client & server program) that communicate trough network as
follow :
Client will send request to server for searching data when user click Button Search.
In respond to the client request server program will searching the data and will send
the result back to the client. After receiving the result client will display the result to
the textarea.

Guide for creating client program :
1. Using Swing create GUI as Follow :

Figure 5.1
Client GUI

2. When user click Connect Button the client program will invoke method that build
a communication Socket to server program with InetAddress 127.0.0.1 and port
number 2003 as follow :

soc = new Socket("127.0.0.1", 2003);
tfStatus.setText(" connected ..");
oute = new PrintWriter(soc.getOutputStream(),true);
in = new BufferedReader(new
InputStreamReader(soc.getInputStream()));

please handle the error that may be thrown by those statement.

3. When the user clicked Button Send after the communication stream has been
built the program will call a method that do as follow :
Send the String from the bottom side textfield to the server as a request for
searching data. Wait for receiving search result from the server and display the
result to the textarea. As follow :

data = tfText.getText();
tfStatus.setText("Searching ...");

oute.println(data);

String balik = in.readLine();
System.out.println("Initial Reading OK "+balik);
if(balik.equals("false")){

tfStatus.setText("Sorry can't find those data !");
}else{

String datNIM = in.readLine();
String datNama = in.readLine();
taResult.setText("Search Result :\n");
taResult.append("Enroll No :

"+datNIM+"\n");
taResult.append("Name : "+datNama+"\n");

}
please catch any error throws by any statement.

Guide for creating server program :
1. In main method of server program at first create ServerSocket on port

number 2003, and then continousely create socket to handle client
connection that accepted trough ServerSocket.

 ServerSocket socketServer = null;

 socketServer = new ServerSocket(2003);

 System.out.println("listening ... ");
 while(true){

Socket socketClient = null;
socketClient = socketServer.accept();
System.out.println("accept conection ");
new threadServis(socketClient).start();

You must handle any error thrown by any statement.

2. Notice on the last statement in the main method code above :
new threadServis().start();
it means that the program call a class name threadServis, that is a Thread.

where the threadServis should implement all process performed by server
program as responses of client request to the server (to search a Name of
specified enroll number).
suppose that the data is stored in an Array. so the threadService class code

is :

class threadServis extends Thread{
Socket socketClient;
String[] enroll = {"0001","0002","0003","0004","0005"};
String[] name = {"Anny","John","July","Rita","Andrew"};

public threadServis(Socket so){
socketClient = so;

}

public void run(){
BufferedReader in = null;
PrintWriter oute = null;

in = new BufferedReader(new InputStreamReader(
socketClient.getInputStream()));
oute = new PrintWriter(socketClient.getOutputStream(),

true);
System.out.println("i/o OK server running ");

String inputLine = null;
inputLine = in.readLine();

boolean hasil=true;
int id=0;
for(int i=0; i<5; i++){

if(inputLine.equals(enroll[i])){
hasil = true; id = i;break;

}else{ hasil = false;}
}
if(hasil){

oute.println("true");
oute.println(enroll[id]);
oute.println(name[id]);
System.out.println("search = "+hasil);}

else{
oute.println("false");System.out.println("saerch =

"+hasil);
}

}
}

Do It Your Self :
Modify the Exercise Program above where the GUI as shown in figure 5.2. and the
process that client program ask to the server program is as follow :
Client program will send two number entered by user in the textfield, to the server
program will multiply those numbers and send back the result to the client. After
receiving those result Client program will display in the textarea as shown in figure
5.2

figure 5.2
Client GUI

SESSION VII
Network Programming

Subject :
DatagramSocket, DatagramPacket and MulticastSocket

Objective :
Understanding DatagramSocket
Understanding DatagramPacket
Understanding MulticastSocket

Review :
 You can constructs a datagram socket and binds it to any available port on the
local host machine, using this constructor :

 DatagramSocket()
or you can constructs a datagram socket and binds it to the specified port on the
local host machine.

 DatagramSocket(int port)

To constructs a DatagramPacket for receiving packets with specific length. we can
used :

 DatagramPacket(byte[] buf, int length)

while to constructs a datagram packet for sending packets of specific length to the
specified port number on the specified host. we used :
 DatagramPacket(byte[] buf, int length, InetAddress address, int port)

To send a packet trough specified socket we can used method :
send(Datagrampacket pack);
of DatagramSocket class.
To receive packet from specified sacket we cant used method :
receive(DatagramPacket pack);
of DatagramSocket class.

Constructor : MulticastSocket(int port) is used to create a multicast socket and bind
it to a specific port.
and to joint to a multicast group we cant used method : joinGroup(InetAddress
addr);

Exercises :
Create two program (client program & server program) that communicate via
network as follow :
when user run the client program, after create Client GUI the program will construct
a DatagramSocket to communicate with server program and get InetAddress of
specified Host that running server program. After user clicked the Button “Send”
Client program will send the string to the server program trough the
DatagramSocket. After receiving the packet the running server program will send
back to the client program. Client program will display each receive packet from the
server program.

Guide for creating Client program :
1. Using Swing create GUI as shown in figure 6.1.
2. After constructing all GUI component in constructor create DatagramSocket and

get InetAddress using the follwing code :

comSocket = new DatagramSocket();
addr = InetAddress.getByName("comp1");

don’t forget to catch any error thrown by the statement.

3. To implement processes when user clicked “Send” Button create a method
that contain the following code :

figure 6.1
Client GUI

DatagramPacket mpacket, recpacket;

byte[] buf2 = new byte[256];
buf2 = message.getBytes();
mpacket = new DatagramPacket(buf2, buf2.length, addr,
4500);
comSocket.send(mpacket);

recpacket = new DatagramPacket(buf2, buf2.length);
comSocket.receive(recpacket);

String data = new String(recpacket.getData());
taView.append(data);

don't forget to catch any Exception thrown by each statement.

Guide for creating server program :
1. In main method of server program at first it will instant an object of

serverGram class and call method start. serverGram is a class that extend a
Thread class. we create serverGram class to implement all proses did by
server.

2. In the constructor of serverGram class it will create a DatagramSocket object
with port number 4500.

super("serverG");
socket = new DatagramSocket(4500);

serverGram class must override run method with the following code :

in = new BufferedReader(new
InputStreamReader(System.in));
try{
 String jalan = in.readLine();
 byte[] buf = new byte[256];
 System.out.println("waiting request ..");

// this loop is to run continuously all process of receiving a
// packet and sending back to request client

while(!jalan.equals("exit")){

// this code is to receive request
DatagramPacket packet = new DatagramPacket(buf,
buf.length);
socket.receive(packet);
System.out.println("recieving request ..");

// this code is to send packet
String datasend = new String(packet.getData());
buf = datasend.getBytes();
InetAddress address = packet.getAddress();
int port = packet.getPort();
packet = new DatagramPacket(buf, buf.length, address,
port);

socket.send(packet);
System.out.println("sending packet ..");

}
in.close();
System.exit(0);

Do It Your Self :
Modify the program in the exercise so after server program receive packet from
Client program, it will broadcast the packet to all running client program(send to all
client that joint to the server)
please use MulticastSocket & method jointGroup in the Client Program, and use
defined InetAddress for broadcast group.

comSocket = new MulticastSocket(4500);
addr = InetAddress.getByName("230.0.0.1");
comSocket.joinGroup(addr);

DatagramPacket packetsend = new DatagramPacket(buf,
buf.length, address, 4500);
socket.send(packetsend);

Session VIII

Java Bean

Subject
Creating Bean Component

Objective
1. Understanding Java Bean
2. Understanding steps creating Java Bean
3. Know how to use Java Bean

Creating Bean guide
1. Write a java bean code with the following main criteria:

a. If the class have constructors it must a default constructor
b. Each properties should have set and get method
c. The class should implements Serializable interface.

2. Compile the Bean class above
3. Create manifest file for the Bean class. The manifest file should contained :

Java-Bean: True
Name: BeanName.class

4. Create jar file. The jar file contains manifest file and Bean classes
5. The created jar file should located in the classpath. Its ready to use.

Exercises
1. Create bean class, the bean is a message box contains a message, title and Button.

As shown bellow:

2. Create java program that use the bean. This program is a frame that have a button. If
user click the button the program will invoke the bean and show the message box.

Do it your self
1. Create bean class, the bean is a Input box contains a message, title, text filed to enter

user input and Button.

2. Create java program that use the bean. This program is a frame that have a button. If
user click the button the program will invoke the bean and show the input box. After
user click ok button the program should get the user input and view the input in the
parent frame.

Session IX

Java Security

Subject
Controlling Applet and Create Digital Signature

Objective
1. Familiar with java security policy
2. Able to create jar file with digital signature

Java security guide
Creating policy file

1. Run the policytool program

2. Add new policy with the code base http://hostname/appletdirectory/ or
file:/c:/foldername/

3. Add permission

4. Save the policy file
Chose Menu file and Save with the name policyfile

5. To see the result, create an applet that accessing file in local computer, run
appletviewer with the following command

Appletviewer –J-Djava.security.policy=policyfile
http://hostname/appletdirectory/appletname.html

Creating jar file with digital signature
a. Steps for code signer

1. Creating jar file contain the class file
jar cvf FileName.jar ApplicationName.class

2. Generate the public and private key pair with the public key in certificate
keytool -genkey -alias signFiles -keypass kyp789
 -keystore nimmistore -storepass ap987t

3. Sign the jar file
jarsigner -keystore nimmistore -signedjar sFileName.jar FileName.jar
signFiles

4. Export the public key certificate
keytool -export -keystore nimmistore -alias signFiles -file
NimmiRamirez.cer

b. Steps for code receiver
1. Observe the restricted application

java -Djava.security.manager -cp sCount.jar Count
C:\TestData\data

2. Import the certificate as trusted certificate
keytool -import -alias nimmi -file NimmiRamirez.cer
-keystore raystore

3. You can get the finger print with the following command
keytool -printcert -file SusanJones.cer

4. Set up policy file to grant the required permission using policytool

Exercises
1. Create file c:\temp\data. This file must contain text as shown in the following figure.

2. Create an applet as shown in figure … above, when user click Open button in the
applet then it’s will display contents of file in the applet text area. And when user click
Save button all text in the applet text area will store to the file

3. Create policy file to grant access to those file.

Do it your self
1. Create an application that read file from local disc c:\temp\data and showing in the

text area

2. Create jar file from those class file Application.jar
3. Sign the jar file sApplication.jar and create certificate java.cer
4. Copy the signed jar file and certificate to c:\digital\
5. Run the application under java security manager.

SESSION X
Remote Method Invocation : Basic Concepts

Objective :
- Understand remote method invocation mechanism
- Capable of creating a simple RMI Application

Exercise :
1. Create and compile a class representing a Person entity, with the following properties :
- full name
- address
- sex
and the respective accessor and mutator method, as follow :

public class Person implements Serializable
{
 private String fullName;
 private String address;
 private String sex;

 public String getName() {}
 public String getAddress() {}
 public String getSex() {}

 public void setName(String name) {}
 public void setAddress(String address) {}
 public void setSex(String sex) {}
}

2. Create and compile a remote interface with one method for saving Person object to
permanent storage.
The code is provided as follow :

public interface PersonData extends Remote
{
 public boolean save(Person p) throws RemoteException ;
}

3. Create a remote class, implementing method save in the interface. The method will write
data in Person object to database.

public class PersonDataImpl extends UnicastRemoteObject
 implements Remote
{
 public PersonDataImpl()
 {
 super();
 // initialize database connectivity here ...
 }

 public save (Person p)
 {
 // insert person data into database here ...
 }
}

4. Create a client class accessing remote method save, passing your personal data encapsulated
in Person object.

public class ClientApps
{
 public static void main(String[] args)
 {
 // install security manager
 // lookup remote object
 // invoke save
 }
}

5. Create a class for Remote Object registration and activation.
public class ServerRunner
{
 public static void main(String[] args)
 {
 // instantiate remote implementation object
 // start rmiregistry
 // register remote object to rmiregistry
 }
}

6. Compile the java files
$ javac *.java
$ rmic PersonDataImpl

7. Place the class files in the appropriate place

8. Compile and Run the application
$ java ServerRunner

Do it yourself :
- Extend the application by adding method for deleting a person data from the database.

SESSION XI
Remote Method Invocation : Dynamic Class Loading

Objective :
� understand concept and architecture of dynamic class loading mechanism
� able to implement dynamic class loading feature in Java

Exercise :
1. Create a shared folder accessible from network. Test the shared folder for downloading file.

The shared folder will be referred as $shared in this example. Replace $shared with
path to your shared folder.

2. The server invoker, remote interface and implementation class remains unchanged. Compile
and place the class file and the stub in the shared folder.

3. The client will be loaded dynamically. Create class for invoking client application. The code
is provided as follow:

import java.rmi.*;
import java.rmi.server.*;
import java.util.Properties;

public class ClientLoader{
 public static void main(String[] args){

 // installing security manager
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new RMISecurityManager());
 }

 try {

 // getting properties setting
 Properties p = System.getProperties();
 String clientClassUrl =
 p.getProperty("java.rmi.server.codebase");

 // loading client class
 Class clientClass = RMIClassLoader.loadClass(
 clientClassUrl, "HelloClient");
 clientClass.newInstance();
 } catch (Exception err) {
 err.printStackTrace();
 }

 }
}

4. Compile and place the class file in your local folder. We will invoke this class locally.

5. The client application itself must be configured to be able to load dynamically, create a
constructor in client apps as follow:

import java.rmi.*;
import java.rmi.server.*;

public class DynamicHelloClient{
 DynamicHelloClient(){
 System.setSecurityManager(new RMISecurityManager());
 String url = "rmi://comp11:2003/hello";

 try {
 System.out.println("Searching hello .. ");
 Hello h = (Hello) Naming.lookup(url);
 h.sayHello();
 System.out.println(
 "Method invoked, check server output");
 } catch (Exception err){
 err.printStackTrace();
 }
 }
}

6. Compile and place the client apps' class file in $shared.

7. Run the server-invoker class (ServerRunner)

8. Run the client class with specified property setting, as follow:
$ java -Djava.security.policy=hello.policy
 -Djava.rmi.server.codebase=$shared
 ClientLoader

Do it yourself :
Extend the application so that the server class is dynamically loaded in the runtime as well.

SESSION XII
Remote Method Invocation : Activation

Objective :
� Understand object activation and passivation concepts
� Understand object activation and passivation mechanism

Exercise :
1. Create a remote interface with one method capable of calculating addition of two integer.

2. Create a client accessing and invoking the remote method

3. Create a remote class using Activatable as the superclass and implementing remote
interface.

public class ActiveImpl extends Activatable implement
ActiveInterface
{
 public ActiveImpl (ActivationID id, MarshalledObject data)
 throws RemoteException
 {
 super (id, 0);
 }

 // implement remote method here
}

4. Create another class for loading the remote implementation.
public class ActiveRunner {
 public static void main (String[] args) {
 try {
 // install security manager here

 // Creating the group
 String myPolicy = "path to your policy file";
 Properties p = new Properties();
 p.put("java.security.policy", myPolicy);

 ActivationGroupDesc groupDesc
 = new ActivationGroupDesc(p, null);
 ActivationGroupID groupID
 = ActivationGroup.getSystem().
 registerGroup(groupDesc);
 // creating object description
 String classDir = "path to your classfile location";
 ActivationDesc objectDesc =
 new ActivationDesc("ActiveImpl", classDir, null);
 ActiveInterface remoteObj =
 (ActiveInterface)Activatable.register(objectDesc);
 // Registering object
 Registry reg = LocateRegistry.createRegistry(2003);
 reg.rebind("ActiveServer", remoteObj);
 } catch (Exception err) {
 err.printStackTrace();
 }
 }
}

5. Compile all classes, put remote interface, remote implementation, and stub classes in shared
folder.

6. Run the application

Do it yourself :
Modify your Person management application to comply with the exercises above.

Sesssion XIII

Servlet Programming

Subject
Basic Servlet Programming and Session Handling

Objective
• Web Container configuration
• Undestanding servlet life Cycle
• Familliar with handling request and response using doGet() and doPost() method
• Database connectivity with servlet
• Familiar with session handling

Servlet Configuration Guide
Web aplication structure:

• Public Directory
• WEB-INF/web.xml file
• WEB-INF/classes directory
• WEB-INF/lib directory

Creating servlet program using Tomcat web container step by step
1. Locating web application foolder

Example:
C:\ServletProgram

\src
\ServletTest.java

\index.html
\WEB-INF

\web.xml
\classes

\ServletTest.class

2. Edit Tomcat configuration file %TOMCAT_HOME%\conf\server.xml and add new
context as follow:
<Context path=”ServletProgram”
 docBase=”C:\ServletProgram”>
</Context>

3. Create html file C:\ServletProgram\index.html
4. Create servlet code program

C:\ServletProgram\src\ServletTest.java

5. Compaile the Servlet code program and copy to \WEB-INF\classes directory.
C:\ServletProgram\WEB-INF\classes\ServletTest.class

6. Create Deployment Descriptor web.xml file bellow:
<?xml version=”1.0” encoding=”ISO-8859-1”?>
<DOCTYPE web-app
 PUBLIC “-//Sun Microsystem, Inc.//DTD Web Application
 2.2//EN”
 “http://java.sun.com/j2ee/dtds/web-app_2.2.dtd”>
<web-app>

<servlet>

<servlet-name>Test</servlet-name>
<servlet-class>ServletTest</servlet-class>

</servlet>
<servlet>

<servlet-name>Test</servlet-name>
<url-pattern>/servlet/Test</url-pattern>

</servlet>
</web-app>

7. You can open web browser and type the following address to see the result
http://hostname:8080/ServletProgram/Test

Exercises
1. Create database: ServletDb
2. Create members table

Field Type Key
User_name Varchar(40) Primary key
Password Varchar(40)
First_name Varchar(30)
Last_name Varchar(30)
Email Varchar(40)
Phone Varchar(15)
Address Varchar(50)
City Varchar(40)

3. Create file registration.html as follow

4. Create Register servlet. This servlet is to process of restoring data to database as a
response of your request. The servlet will displaying page as shown the following
figure when the restoring process finished.

Do It Your Self
1. Create file login.html as follow:

2. Create CheckLogin servlet to validate user name and password, if login successfull
then servlet will display hyperlinks to user profile servlet and logout servlet.

if login failed the servlet will display the following message “Invalid username or
password!”

3. Create the Profile servlet to display active user details at this time. And this servlet
can’t be accessed if the user not login.

4. Create Logout servlet that handling logout session (invalidate the session).

Session XIV

Servlet Programming

Subject
Context dan Collaboration

Objective
• Understanding servlet Context
• Understanding request dispatcher

Servlet Context Configuration Guide
To add context parameter you can edit the deployment descriptor file (web.xml file) as follow:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <context-param>

<param-name>driver</param-name>
<param-value>
com.microsoft.jdbc.sqlserver.SQLServerDriver
</param-value>

 </context-param>
 <context-param>
 <param-name>protocol</param-name>
 <param-value>

jdbc:microsoft:sqlserver://win2ksvr:1433;
DatabaseName=servletDb;User=sa;Password=

 </param-value>
 </context-param>
 <servlet>
 <servlet-name>Banner</servlet-name>
 <servlet-class>Banner</servlet-class>
 </servlet>

.

.

.
<web-app>

Exercises
1. Create Service table with the fillowing structure

Field Type Key
Id Int Primary key(Auto Increament)
email Varchar(40)
softwar
e

Varchar(40)

os Varchar(30)
request Varchar(50)

2. Create file freeservice.html as follow:

3. Create RequestServlet servlet to handle request and from freeservice.html page and
restore data to service table. Use getServletContext() method to get context parameter
(driver and url) containing in the web.xml file

4.

Do It Your self
1. modify RequestServlet file to check weather email of requested user is already

stored in the members table. If user email is exist in the members table the servlet
will forward request to ResponseServlet with request attribute lastName and
firstName retrieving from members table.

2. Otherwise it will forward to register.html with session attribute email address.

