
Kuliah Umum IlmuKomputer.Com
Copyright © 2005 IlmuKomputer.Com

 1

AAccttiivvee DDaattaabbaassee
IImmpplleemmeennttaattiioonn
FFoorr RReeaall--TTiimmee CCoommppuuttiinngg

Mohamad Ridha
ridha72@yahoo.com

ABSTRACT

Real-time computing can be found in many different types of applications such as traffic control
systems, telecommunication systems, manufacturing applications, stock market and trading
transactions, military command and control systems. A real-time application that monitors its
surroundings and is required to react immediately based on an occurred event need an active
database system that is able to detect the event and condition to perform an action based on its
certain rules specification. Compared to other systems, a real-time system requires not only
correctness in its output and behavior, but also a prompt response in a certain time to avoid
failure. Data received or stored by the system must be accessed and processed without risking any
time constraint in real-time transactions. Both of these requirement and constraint become the
main concern in implementing a database management system used in a real-time application.
This concern has been a focus of research for the last decade in the field of databases and real-
time computing. By studying previous research in this field, this paper explores on basic
concepts, issues and proposed solutions on implementing active database systems in real-time
applications.

Lisensi Dokumen:
Copyright © 2005 IlmuKomputer.Com
Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan
secara bebas untuk tujuan bukan komersial (nonprofit), dengan syarat tidak menghapus atau
merubah atribut penulis dan pernyataan copyright yang disertakan dalam setiap dokumen.
Tidak diperbolehkan melakukan penulisan ulang, kecuali mendapatkan ijin terlebih dahulu
dari IlmuKomputer.Com.

Kuliah Umum IlmuKomputer.Com
Copyright © 2005 IlmuKomputer.Com

 2

1. Introduction

Real-time computing can be found

in many different types of application such
as traffic control systems,
telecommunication systems, manufacturing
applications, stock market programs, and
military control systems. A real-time system,
in contrast to other systems, requires not
only correctness in its output and behavior,
but also a prompt response in a certain time
to avoid failure. Data received or stored by
the system must be accessed and processed
without risking any time constraint in real-
time transactions. When this real-time data
is stored in a database, the application needs
a database system to handle schemas,
queries, transactions and concurrency
protocols, and the storage management [7].

If real-time application is required

to react immediately based on an occurred
event, it needs an active behavior that is able
to detect the event in a certain condition and
trigger an action based on some rules
specification. If this active behavior is
implemented as part of the database system,
the database system will then be categorized
as being both active and real-time [10]. The
problem arises when such active behavior is
considered as a factor that may reduce the
response time that is needed by a real-time
application. The level of complexity in
implementing such database system
increases considering the implementation
should take into account both active and
timeliness requirement for the application.
This concern has been a focus of research
for the last decade in the field of active
databases and real-time databases. While
there have been some good numbers of
research works that focus on active and real-
time database systems in separate topics,
only few that discuss the active real-time
database system as an integrated subject [6].

This paper is written based on

several research papers in both fields of
active and real-time database systems, with
the goal to explore concepts, issues and

proposed solutions in implementing an
active real-time database system. The next
part of the paper will be divided into several
sections: section 2 covers the basic concepts
on active database system, section 3 covers
the basic concepts of real-time databases,
and section 4 discusses issues in combining
features of active and real-time database
systems, with some possible solutions to
these issues. List of references is given at
the end of the paper.

In this paper, the use of word

database refers to the collection of related
data, and the word database system refers to
a collection of programs that maintain the
database (process queries, data access, etc.)
together with the database itself [9].

2. Active Database System

2.1 Definition

An active database system is “a
database system that is capable of initiating
actions” [6]. Conventional database system
is considered passive in which it relies on
the user or application program in executing
queries [11]. User submits query and the
database system executes the query and
returns the result. However, this passive
behavior may not be suitable for many
applications where certain condition in the
database has to be monitored in order to
avoid unwanted consequences. For example,
in an inventory control application, the
number of items in a product table in the
database needs to be reduced based on the
number of order placed by customer in any
given time. The update query to reduce this
number is run by the application program
when the order has been placed. Before the
update, another query needs to run to check
whether the item is still available, i.e. the
item quantity is not equal to zero, to avoid
shortage of items or placing order when
there are no more items. If the number of
items is equal to or greater than the number
of order, the order can be placed and the

Kuliah Umum IlmuKomputer.Com
Copyright © 2005 IlmuKomputer.Com

 3

update query is then run. Otherwise, if the
check result returns zero, the order cannot be
placed and the program needs to report the
situation or send a reminder for reordering
the items. The problem with this approach is
the application program becomes less
modularized with additional functionality to
check the items availability prior to every
purchase. The application program will also
become less reusable which then result in
costly maintenance [9].

Another way to accomplish this is

by monitoring the condition with the use of
a program that periodically runs queries to
check the condition, which is the availability
of the purchased item in the above example.
The database is polled frequently and based
on a certain rules specification, condition is
evaluated and action is taken when the
condition evaluated is true. If for any given
time, the item is equal to zero or falls in a
range of predefined values, the program will
call another program that generates report or
sends reminder. Since the polling is
performed based on a frequent basis, the
optimal frequency is difficult to determine.
If the polling is too frequent, the database
must process queries which return often
nothing. The database will then experience
thrashing which results in unnecessary waste
of resources [11]. If the polling is less
frequent, some events and an important
response time window can be missed [9].

In contrast to traditional database

system, active database system, as its name
implies, is designed to have active behavior
in which it does not passively rely on the
user or application program in executing
actions such as queries or stored procedures.
The database system monitors a predefined
condition based on arrival of an event or set
of events which then sets a trigger to
perform action. In the above example of
inventory control application, a rule can be
constructed by specifying the event to detect
(an update to the product table), the
condition to evaluate (number of items in
the product table is equal to a value or a set

of values) and the action to perform (call the
procedure to send report or reminder). By
giving the ability to the database to detect
event, to evaluate condition and to take
action, rules and constraints can be defined
centrally in the database system consistently
for all application programs. This will
prevent the situation where two application
programs can have inconsistency rules or
constraints from happening [12].

2.2 Event-Condition-Action

The active behavior in active
database system is managed by ECA (Event-
Condition-Action) rule, where upon the
detection of event E and the satisfaction of
condition C, the action A is executed. While
the event specifies the need to check, the
condition determines what to check [12].
The semantic of ECA rule can be written
[3]:

on <event E>
if <condition C>
then <action A>

For an inventory control application
example, a rule can be specified as [5]:
define rule R1 on Product table update
if Product.ItemQuantity <= MIN_AMOUNT
then SendReport()

It was suggested that rules are

implemented as objects so the database
system can easily manage them (in creating,
editing, or deleting them) by using
transaction mechanisms like any other
object in the database [12].

2.2.1 Event

An event in the active database
context is defined as “something that
happens at a point in time” [3], not over a
period of time, and it is instantaneous and
atomic [5]. An event can be categorized into
two: primitive events and composite events.
Primitive events are elementary events

Kuliah Umum IlmuKomputer.Com
Copyright © 2005 IlmuKomputer.Com

 4

predefined in the system, and can be
classified as follows [12]:

• Database events: Events that
correspond to database operation,
such as begin and end transaction,
and access to data (retrieval,
insertion, update, deletion).

• Temporal events: Events that are
triggered at predefined points in
time. They can either be absolute
(e.g. triggered every midnight) or
relative temporal events (e.g. 10
minutes after some other event).

• Explicit events: Events that are
external to the database, raised by
the user or the application. For
example, readings from a sensor in
real-time application.

Composite events are a set of events which
contains primitive or composite events
combined with logical operators such as
conjunction (“and”), disjunction (“or”), or
sequence [5], [12]. Primitive and composite
events are demonstrated in the example
below [5]:
define event E1 on after Product::Update
define event E2 on after Order::Update
define event E3 as (E1 and E2)
define event E4 as (E1 or E2)

Events E1 and E2 are primitive events, and
events E3 and E3 are composite events with
different logical operators. Although
composite events are useful indicators for
detecting complex situations, they can be
very costly in regards to the time taken to
detect them [4]. This factor will be one of
the considerations when implementing an
active database system for real-time
application.

2.2.2 Condition

Before any action can be executed,
condition specified in ECA rule must be
evaluated. If the condition is true then the
specified action is carried out, otherwise no
action is performed. Condition can be a
query to the database that returns a result or

empty, or a call to an existing function or
procedure with some return value [12]. The
evaluation of condition can be done right
away after the event is detected or after the
transaction which triggers the event has been
completed. In the example of inventory
control application above, the condition is
item quantity is less or equal to predefined
minimum value.

2.2.3 Action

Action is carried out only after the
evaluation of condition is satisfied. Action
may include the database operations such as
retrieval, insertion, update, or deletion of
data [12], or call to stored procedure or
function to execute several transactions. In
the example of inventory control
application, the action is calling a function
to send report or reminder that the item
quantity has reached the minimum.

2.3 Execution model

2.3.1 Coupling modes

Coupling modes can be seen as
types “to determine how rules to be
executed relative to the triggering
transaction” [6]. In ECA rules, the
occurrence of event, caused by a transaction,
always comes prior to condition evaluation
and action execution. There are three
coupling modes where both condition
evaluation and action execution can take
place relative to the triggering event [12]:

• Immediate: where they both take
place upon the arrival of the event.
The triggering transaction, i.e. the
transaction that causes the event
occurs will be suspended until
condition is evaluated and the action
is performed or not depending upon
the result of condition evaluation.

• Deferred: They both take place at
the end of the triggering transaction
before it commits.

Kuliah Umum IlmuKomputer.Com
Copyright © 2005 IlmuKomputer.Com

 5

• Detached: They both are performed
in one or separate transaction.

2.3.2 Cascade triggering

Cascade triggering is a situation
when an event triggers an action which in
turn triggers another event that triggers
another action. This situation can result in
an infinite circular triggering. One way to
avoid this to happen is to set a limit in
triggering depth, or to prohibit any rule that
may introduce such cascade triggering [12].

2.3.3 Conflict resolution and
priorities

Conflict between rules can happen

when an event is specified in several rules in
the database system. In this situation, active
database system needs to identify which rule
should run first from the other. One way to
solve the conflict is by using some form of
priorities to either pick one rule or set the
order of several rules. These priorities can
be set by user or set by the database system
by default, i.e. based on the creation time:
the older, the higher priority [12].

3. Real-Time System

3.1 Definition

Real-time system is defined as “a
system where not only the logical result of
executing a task is important, but also there
is a strict requirement imposed on the
system to produce the result in timely
fashion [5]”. Real-time system does not
mean fast system. Fast computing targets at
minimizing the average transaction’s
response time, while real-time aims to meet
the timing constraint requirement beside
valid transaction execution [7]. Data
received or stored by the system must be
accessed and processed without risking any
time constraint in real-time transactions.
When this real-time data is stored in a

database, the application needs a database
system to handle schemas, queries,
transactions and concurrency protocols, and
the storage management [7].

Compared to conventional database

systems, real-time database system expects
the result of task execution to be delivered
within a time constraint, called deadline. All
or at least some transactions in real-time
database system will have deadlines [1].
The database system can achieve this by
making the task execution time predictable.
One way to do this is by utilizing time-
cognizant protocol in contrast to the 2PL
(two-phase locking) protocol used in
conventional database. In conventional
database, as shown in Figure 1 (a),
transaction A comes first before transaction
B and locks data. B arrives later and waits
for A to release its lock. A has not released
the lock until after B’s deadline has passed,
which means B’s deadline is missed. In real-
time database, shown in Figure 1 (b),
although B arrives later than A, B can start
by aborting A since B’s deadline is earlier
than A’s. When B finishes, A restarts and
completes its task before its deadline [7].

(Figure 1)

3.2 Deadlines and temporal validity

Depending upon its varying degree
of importance of meeting deadlines, real-
time system can be categorized into hard

Kuliah Umum IlmuKomputer.Com
Copyright © 2005 IlmuKomputer.Com

 6

and soft systems [1]. In hard real-time
system, no deadline should be violated and
missing a deadline can cause negative or
catastrophic consequences to the system or
its environment. Soft real-time system which
also aims to ensure tasks to meet their
deadlines will not have a negative
consequence if any deadline is missed. Real-
time database system uses value function to
give positive value if deadline is met and
negative value if it is not met [2].

Real-time database system works in

real-time data which are changing often.
Much of the data become valueless after a
brief period of time and cannot be used for
obtaining new data or decision making
process. This is called “temporal consistency
requirement” in real-time database system
which can used to determine a frequency of
readings (data capture) and can be
categorized into two [12]:
• Absolute validity: Validity of data lies

only between absolute points in time.
• Relative validity: Different data must be

temporally consistent with each other
for them to be valid.

3.3 Transaction and scheduling

In conventional database system,
transaction manager should support
transaction ACID (Atomicity, Consistency,
Isolation, and Durability) property while
maintaining the high throughput by
executing transactions concurrently [2]. In
most real-time database systems, in addition
to ACID property, transaction manager
should also support real-time timing
constraint. This means, transaction manager
should be able to reduce delays caused by
blocking or logging done in pessimistic
concurrency control protocols. Two-phase
locking (2PL) protocol that is often used in
conventional database system may not be
suitable for real-time database system
because it may introduce deadlock when
some transactions are involved in a circular
wait [2]. The use of locking found in

pessimistic concurrency control should
therefore be avoided; instead the use of
optimistic concurrency control (OCC) is
preferable since it is well-suited for real-
time database system [2], [6].

In real-time database system,

schedules are managed by a scheduler.
Schedule can be predefined off-line (static)
by user, or defined on-line dynamically by
the scheduler at run time for given
transactions. In the dynamic scheduling,
when too many transactions are received at
any given time, the scheduler might
experience overload in determining their
schedules within a certain deadline. To
resolve this, some transactions can be
aborted, or they can be blocked from coming
into the system [12].

3.4 Contingency plan

As mentioned above, hard real-time
system is designed to guarantee all deadlines
are met. When there is a risk of a transaction
missing a deadline, a contingency plan is
defined to be executed when a deadline
cannot be met [1]. The result of transaction
defined in contingency plan might not be
exactly the same as the original transaction,
but it is completed before the deadline as
required. This can be done by several ways
[12]:
• by dividing the transaction into parts

that can be skipped to decrease
execution time,

• by dividing the transaction into parts
that are mandatory and optional to be
executed,

• by creating primary and alternative
versions of the transaction.

There are overhead associated with the
above that should be taken into
consideration when choosing contingency
plan techniques [12].

Kuliah Umum IlmuKomputer.Com
Copyright © 2005 IlmuKomputer.Com

 7

3.5 Predictability of timing

Real-time database systems requires
timing predictability when executing a task
or transaction. Several factors make it
difficult to predict a deadline for a
transaction in the real-time database system
[12]:
• The data of which the transaction

depend upon can change over time from
execution to execution which makes it is
hard to predict how long the transaction
can complete its task. This can be
handled by avoiding the use of some
program constructs such as recursive or
dynamic creation of data.

• The use of pessimistic concurrency
control protocol can introduce locking
and blocking for an unpredictable
amount of time. Optimistic concurrency
control protocol can be used instead .

• Reading data from disk is much slower
than reading it from memory. This
magnitude difference makes it hard to
predict the timing of completion since a
transaction does not know whether the
data is still in the disk or already exists
in the memory.

• Transactions can be aborted and
restarted in the middle of on-going
executions. This unpredicted number of
aborts and restarts make it hard to
predict the completion time.

3.6 Buffer Management

Buffer management is associated
with the use of main memory during reading
and writing data from and to the disk [8]. In
a real-time system that has limited main
memory, buffer management has to ensure
that high priority transactions are executed
[2]. When the main memory has a plenty of
space, the database is preferred to reside in
the main memory (“memory resident
database system”) to enable fast and
predictable access [1], [2].

If the database resides in main
memory, the problem arises when the
system fails and causes the data stored in
main memory lost. To handle this situation,
a non-volatile or persistent storage is needed
to keep the persistence data, or the memory
can be made stable supported by power from
battery. Logging needs to be performed as a
way to do recovery in case the system fails
[12].

4. Solutions for issues found
in implementation

In section 2 and 3, some basic
concepts of active and real-time database
system are outlined. In this section, some
issues in implementing active database
system in real-time computing will be
discussed.

The implementation can be viewed
as merging the two database systems (active
and real-time) into a one integrated, active
real-time database system. The main
problem is the existence of conflicting
requirement of the original systems. Active
database system requires an active behavior,
and real-time database systems requires
timelines and predictability. Active behavior
adds execution time and adds some
unpredictability factors to the system. To
solve this problem, time constraint handling
needs to be integrated with active
requirement. To do this, time-cognizant
priority assignment, concurrency control and
conflict resolution mechanism need to be
identified [13]. Some solutions are listed as
follows:

4.1 Avoiding transaction time slack

To avoid the situation where the
triggering transaction missing deadlines
because of the time taken by triggered rules
execution decreases its time to complete the
task (and meet the deadline), the rules
should be run in detached mode,

Kuliah Umum IlmuKomputer.Com
Copyright © 2005 IlmuKomputer.Com

 8

concurrently with the triggering transaction.
[12]

4.2 Avoiding cascade triggering

Cascade triggering in real-time
constraints environment can cause many
transactions miss their deadlines. To avoid
this, the database system should not allow
rules to trigger another rule. [5], [12]

4.3 Avoiding high cost in composite
event detection

As mentioned before, although
composite events are useful indicators for
detecting complex situations, they can be
very costly in regards to the time taken to
detect them. This is unacceptable in real-
time system. To avoid this, composite events
should only triggers rules with detached
mode, which will not result in the
unpredictable execution time of the rules.
[5], [12]

4.4 Avoiding missing deadline during
overload

As mentioned before, when
scheduler experiences overload, some
transactions must be aborted, hence they
will not meet the deadlines. In hard real-time
system, this should not be happening. To
avoid this, contingency plan can be defined
and executed when there is a chance that a
transaction cannot meet the deadline and
there is enough time for the alternate actions
to take place. The time of switch can be
identified by monitoring milestones set for
transactions; when a transaction misses
milestone, the contingency plan is carried
out. [12]

4.5 Semantic for time-constraint ECA
rule

The issue of time constraint is not
considered the most important factor in active
database system as in real-time application
[5]. ECA rule specification does not consider
this real-time constraint. To include the time
constraint factor in ECA rule, the following
semantic is proposed [5]:
ON <event E>
IF <condition C>
DO <COMPLETE> action A <WITHIN t
seconds>

The above semantics mean upon arrival of
event E, condition C is evaluated and if it is
true then the action A is executed and
should be completed within t seconds. The
semantics above should be understood
differently from the semantics used in active
database system:

ON <event E>
IF <condition C>
DO action A <WITHIN t seconds>
where action A is executed, not completed
in t seconds.

4.6 Optimizing the optimistic
concurrency control

As mentioned earlier, locking
problem can be caused by using the
pessimistic concurrency control. The use of
locking found in pessimistic concurrency
control should therefore be avoided; instead
the use of optimistic concurrency control
(OCC) is preferable since it is well-suited
for real-time database system [2], [6].
However, two drawbacks in using
conventional OCC have been identified
when used in active real-time database
system [6]:

Kuliah Umum IlmuKomputer.Com
Copyright © 2005 IlmuKomputer.Com

 9

(Figure 2)

• In Figure 2 above, T1 starts at t0 with
deadline t5 and triggers T2 at t1. T2
starts at t1 with deadline t6 and triggers
T4 in t3. T3 starts at t2 with deadline t4.
Since deadline of T1 > deadline of T3,
priority of T3 > priority of T1 (based on
the rule of “earliest deadline-first”).
Assume T1 is in conflict with T3. In tv,
when T3 enters validation phase, T1 will
need to be restarted based on the rule of
conventional Optimistic Concurrency
Control protocol. When T1 is started, T2
and T4 will need to be aborted (since
they are chain-triggered from T1). The
restarted T1 will not have a chance to
complete its deadline. By restarting T1,
T2 and T4 are wasted. This does not
satisfy the important requirement of
real-time system in regards to timing
constrint or deadline, where no
transactions miss their deadline (in hard
real-time system), and only really few
transactions may miss the deadline (in
soft real-time system).

(Figure 3)

• In Figure 3 above, T1 starts at t0 with
deadline t3 and triggers T2 at t1. T2
starts at t1 with deadline t4. T3 starts at
t0, at the same time with T1, with
deadline t2. Since deadline of T1 >
deadline of T3, priority of T3 > priority
of T1. Assume T1 is in conflict with T3.
When T3 enters validation phase at tv,
T1 will need to be restarted based on the
rule of conventional Optimistic
Concurrency Control protocol. When T1
is started, T2 will need to be aborted
(since it is triggered from T1). There are
two alternatives of resolving the
conflict:

• T1 is restarted as stated above. T2 will
then be re-triggered and will have hard
time completed its deadline in t4.

• T3 is restarted. T4 is re-triggered, and
since its deadline t5 still is still long
way, T4 has better chance to complete
compared to T2.

The example above shows that in spite of
the decision taken by the conventional OCC
to chose the first alternative, there are two
alternatives that can be considered, first
when T1 is restarted and second when T3 is
restarted, and second alternative is better in
which the restarted triggered transaction
(T4) completes its deadline.

A new optimistic concurrency control
(OCC) protocol, called OCC-APFO
(Optimistic Concurrency Control-Adaptive
Priority Fan Out) is proposed [6]:

Kuliah Umum IlmuKomputer.Com
Copyright © 2005 IlmuKomputer.Com

 10

“OCC-APFO is an optimistic, priority
cognizant protocal based on the dynamic
adjustment of serialization order. OCC-
APFO uses the notion of timestamp intervals
to record and represent the serialization
orders induced by concurrency dynamics.
Timestamps are associated with both
transactions and data items, but in different
ways:

• Data items and Timestamps: Each data
item has a read and a write timestamp,
in addition to their usual meanings, i.e.
the read and the write timestamps are
the largest timestamp of transactions
that have read or written the data item
respectively.

• Transactions and Timestamps: OCC-
APFO associates with each active
transaction a timestamp interval
expressed as [lower bound (lb), upper
bound (ub)] pair. The timestamp
interval denotes the validity interval of a
transaction. The timestamp intervals are
also used to denote serialization order
between transactions.”

4.7 Using Non-Volatile Memory

As stated earlier in other section, the
primary reason to place the data in main
memory is to avoid unpredictable seek and
rotational delays introduced by disks [7].
However, maintaining large amount of data
in main memory can be very costly and a
solid recovery mechanism that can handle a
system failure should be in place
considering all data will be lost because
main memory is volatile. To reduce the time
taken to read and write to persistence disk
storage, especially in active real-time
database system where the active behavior
may triggers many transactions that contains
read and write operations while the timing
constraint is also enforced by the real-time
requirement, non-volatile memory is
suggested to be used to make deadlines can
be met [13]. Non-volatile RAM (NV-RAM)
can be used as disk cache where data can be
moved from the main memory to it and from

it to the disk. It can also be used as
temporary storage for data to increase
performance. Its data can then either be
migrated to the disk or not depending upon
the data characteristics which will explain
next.

(Figure 4)

Figure 4 shows the four-level
memory hierarchy proposed in [13]. Where
the data is placed depends upon the
characteristics of the data which can be
categorized as follows [13]:

1. Temporal, and non-temporal data
2. Accessed frequently, and accessed

rarely
3. Persistence, and non-persistence
4. Critical and non-critical

Temporal, accessed frequently, non-
persistence and non-critical data can be
placed in main memory, while non-
temporal, accessed rarely, persistence and
critical data should be placed either
temporarily in NV-RAM or in the disk.

Kuliah Umum IlmuKomputer.Com
Copyright © 2005 IlmuKomputer.Com

 11

References

1. J. A. Stankovic, “Distributed Real-Time
Computing: The Next Generation”,
Journal of the Society of Instrument and
Control Engineers of Japan, January 3,
1992

2. B. Kao and H. Garcia-Molina, “An
Overview of Real-Time Database
Systems”, Advances In Real-Time
Systems, p. 463-486, 1995

3. N. W. Patton and O. Diaz, “Active
Database Systems”, ACM Computing
Survey, Vol. 31, No.1, March 1999

4. J. Hansson and M. Berndtsson, “Active
Real-Time Database Systems”, Active
Rules in Database Systems, p. 405-426,
1999.

5. M. Berndtsson and J. Hansson “Issues in
Active Real-Time Databases”,
Proceedings of the International
Workshop on Active and Real-Time
Database Systems, 1995

6. A. Datta and S. H. Son, “A Study of
Concurrency Control in Real-Time,
Active Database Systems”, IEEE
Transactions on Knowledge and Data
Engineering, Vol. 14, No. 3, May/June
2002.

7. J. A. Stankovic, S. H. Son, and J.
Hansson, “Misconceptions About Real-
Time Databases”, IEEE Computer,
32(6):29-36, June 1999

8. R. Ramakrishnan and J. Gehrke,
“Database Management Systems”, 3rd
Edition, 2003

9. R. Elmasri and S. B. Navathe,
“Fundamentals of Database Systems”,
2nd Edition, 1994

10. A. Bestavros, “Advances in Real-Time
Database Systems Research”, ACM
SIGMOD, Vol. 25, Issue 1, p. 3-7,
March 1996.

11. U. Dayal, B. Blaustein, A. Buchmann, I.
Chakravarthy, et.al, “The HiPAC
Project: Combining Active Databases
and Timing Constraints”, ACM
SIGMOD, Special Issue on Real-Time

Database Systems, Vol. 17, Issue 1, p.
51-70, March 1988.

12. J. Erikson, “Real-Time and Active
Databases: A Survey”, ARTDB-97, The
2nd International Workshop on Active,
Real-Time, and Temporal Database
Systems, Advance Proceedings, pages
195--216. IEEE, 1997

13. K. Ramamritham, R. Sivasankaran, J. A.
Stankovic, D. T. Mosley, and M. Xiong,
“Integrating Temporal, Real-Time, and
Active Databases”, ACM SIGMOD,
Vol. 25, No.1, p.8-12, March 1996

Kuliah Umum IlmuKomputer.Com
Copyright © 2005 IlmuKomputer.Com

 12

Biografi Penulis

Mohamad Ridha
Lulus SMA tahun 1990 dari SMA Negeri 14 Jakarta. Sempat kuliah di
Universitas Indonesia, Teknik Elektro, sebelum mendapatkan beasiswa sekolah
ke Amerika tahun 1991. Menyelesaikan S1 tahun 1995 di Purdue University dan
S2 tahun 2000 di Arizona State University pada jurusan Ilmu Komputer. Saat ini
sedang melanjutkan studi dalam jenjang S3 pada jurusan yang sama.

Berpengalaman lebih dari 9 tahun di bidang ilmu komputer khususnya rekayasa perangkat lunak
(software engineering) dalam dunia akademi, riset dan industri di Indonesia dan Amerika.

Informasi lebih lanjut bisa hubungi:

ridha72@yahoo.com

